Mostafa M. Rady , Ahmed S. Elrys , Eman Selem , Ahmed A.A. Mohsen , Safaa M.A.I. Arnaout , Ahmed H. El-Sappah , Khaled A. El-Tarabily , El-Sayed M. Desoky
{"title":"螺旋藻提取物提高了在重金属污染的盐渍土壤中生长的普通豆的产量和防御能力","authors":"Mostafa M. Rady , Ahmed S. Elrys , Eman Selem , Ahmed A.A. Mohsen , Safaa M.A.I. Arnaout , Ahmed H. El-Sappah , Khaled A. El-Tarabily , El-Sayed M. Desoky","doi":"10.1016/j.jes.2022.09.011","DOIUrl":null,"url":null,"abstract":"<div><p>Plants have to cope with several abiotic stresses, including salinity and heavy metals (HMs). Under these stresses, several extracts have been used as effective natural biostimulants, however, the use of <em>Spirulina platensis</em> (SP) extract (SPE) remains elusive. The effects of SPE were evaluated as soil addition (SA) and/or foliar spraying (FS) on antioxidant defenses and HMs content of common bean grown in saline soil contaminated with HMs. Individual (40 or 80 mg SPE/hill added as SA or 20 or 40 mg SPE/plant added as FS) or integrative (SA+FS) applications of SPE showed significant improvements in the following order: SA-80+FS-40 > SA-80+FS-20 > SA-40+FS-40 > SA-40+FS-20 > SA-80 > SA-40 > FS-40 > FS-20 > control. Therefore, the integrative SA+FS with 40 mg SP/plant was the most effective treatment in increasing plant growth and production, overcoming stress effects and minimizing contamination of the edible part. It significantly increased plant growth (74%–185%) and yield (107%–227%) by enhancing net photosynthetic rate (78.5%), stomatal conductance (104%), transpiration rate (124%), and contents of carotenoids (60.0%), chlorophylls (49%–51%), and NPK (271%–366%). These results were concurrent with the marked reductions in malondialdehyde (61.6%), hydrogen peroxide (42.2%), nickel (91%–94%), lead (80%–9%), and cadmium (74%–91%) contents due to the improved contents of glutathione (87.1%), ascorbate (37.0%), and α-tocopherol (77.2%), and the activities of catalase (18.1%), ascorbate peroxidase (18.3%), superoxide dismutase (192%), and glutathione reductase (52.2%) as reinforcing mechanisms. Therefore, this most effective treatment is recommended to mitigate the stress effects of salinity and HMs on common bean production while minimizing HMs in the edible part.</p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"129 ","pages":"Pages 240-257"},"PeriodicalIF":6.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Spirulina platensis extract improves the production and defenses of the common bean grown in a heavy metals-contaminated saline soil\",\"authors\":\"Mostafa M. Rady , Ahmed S. Elrys , Eman Selem , Ahmed A.A. Mohsen , Safaa M.A.I. Arnaout , Ahmed H. El-Sappah , Khaled A. El-Tarabily , El-Sayed M. Desoky\",\"doi\":\"10.1016/j.jes.2022.09.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plants have to cope with several abiotic stresses, including salinity and heavy metals (HMs). Under these stresses, several extracts have been used as effective natural biostimulants, however, the use of <em>Spirulina platensis</em> (SP) extract (SPE) remains elusive. The effects of SPE were evaluated as soil addition (SA) and/or foliar spraying (FS) on antioxidant defenses and HMs content of common bean grown in saline soil contaminated with HMs. Individual (40 or 80 mg SPE/hill added as SA or 20 or 40 mg SPE/plant added as FS) or integrative (SA+FS) applications of SPE showed significant improvements in the following order: SA-80+FS-40 > SA-80+FS-20 > SA-40+FS-40 > SA-40+FS-20 > SA-80 > SA-40 > FS-40 > FS-20 > control. Therefore, the integrative SA+FS with 40 mg SP/plant was the most effective treatment in increasing plant growth and production, overcoming stress effects and minimizing contamination of the edible part. It significantly increased plant growth (74%–185%) and yield (107%–227%) by enhancing net photosynthetic rate (78.5%), stomatal conductance (104%), transpiration rate (124%), and contents of carotenoids (60.0%), chlorophylls (49%–51%), and NPK (271%–366%). These results were concurrent with the marked reductions in malondialdehyde (61.6%), hydrogen peroxide (42.2%), nickel (91%–94%), lead (80%–9%), and cadmium (74%–91%) contents due to the improved contents of glutathione (87.1%), ascorbate (37.0%), and α-tocopherol (77.2%), and the activities of catalase (18.1%), ascorbate peroxidase (18.3%), superoxide dismutase (192%), and glutathione reductase (52.2%) as reinforcing mechanisms. Therefore, this most effective treatment is recommended to mitigate the stress effects of salinity and HMs on common bean production while minimizing HMs in the edible part.</p></div>\",\"PeriodicalId\":15774,\"journal\":{\"name\":\"Journal of environmental sciences\",\"volume\":\"129 \",\"pages\":\"Pages 240-257\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental sciences\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074222004491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental sciences","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074222004491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Spirulina platensis extract improves the production and defenses of the common bean grown in a heavy metals-contaminated saline soil
Plants have to cope with several abiotic stresses, including salinity and heavy metals (HMs). Under these stresses, several extracts have been used as effective natural biostimulants, however, the use of Spirulina platensis (SP) extract (SPE) remains elusive. The effects of SPE were evaluated as soil addition (SA) and/or foliar spraying (FS) on antioxidant defenses and HMs content of common bean grown in saline soil contaminated with HMs. Individual (40 or 80 mg SPE/hill added as SA or 20 or 40 mg SPE/plant added as FS) or integrative (SA+FS) applications of SPE showed significant improvements in the following order: SA-80+FS-40 > SA-80+FS-20 > SA-40+FS-40 > SA-40+FS-20 > SA-80 > SA-40 > FS-40 > FS-20 > control. Therefore, the integrative SA+FS with 40 mg SP/plant was the most effective treatment in increasing plant growth and production, overcoming stress effects and minimizing contamination of the edible part. It significantly increased plant growth (74%–185%) and yield (107%–227%) by enhancing net photosynthetic rate (78.5%), stomatal conductance (104%), transpiration rate (124%), and contents of carotenoids (60.0%), chlorophylls (49%–51%), and NPK (271%–366%). These results were concurrent with the marked reductions in malondialdehyde (61.6%), hydrogen peroxide (42.2%), nickel (91%–94%), lead (80%–9%), and cadmium (74%–91%) contents due to the improved contents of glutathione (87.1%), ascorbate (37.0%), and α-tocopherol (77.2%), and the activities of catalase (18.1%), ascorbate peroxidase (18.3%), superoxide dismutase (192%), and glutathione reductase (52.2%) as reinforcing mechanisms. Therefore, this most effective treatment is recommended to mitigate the stress effects of salinity and HMs on common bean production while minimizing HMs in the edible part.
期刊介绍:
Journal of Environmental Sciences is an international peer-reviewed journal established in 1989. It is sponsored by the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, and it is jointly published by Elsevier and Science Press. It aims to foster interdisciplinary communication and promote understanding of significant environmental issues. The journal seeks to publish significant and novel research on the fate and behaviour of emerging contaminants, human impact on the environment, human exposure to environmental contaminants and their health effects, and environmental remediation and management. Original research articles, critical reviews, highlights, and perspectives of high quality are published both in print and online.