{"title":"抗精神病药物penfluridol抑制N-linked糖蛋白加工并增强t细胞介导的肿瘤免疫。","authors":"Wenlong Xu, Yuqi Wang, Na Zhang, Xiaofeng Lin, Di Zhu, Cheng Shen, Xiaobo Wang, Haiyang Li, Jinjiang Xue, Qian Yu, Xinyi Lu, Lu Zhou, Qingli He, Zhijun Tang, Shaodan He, Jianjun Fan, Jianbo Pan, Jiangjiang Tang, Wei Jiang, Mingliang Ye, Fanghui Lu, Zengxia Li, Yongjun Dang","doi":"10.1158/1535-7163.MCT-23-0449","DOIUrl":null,"url":null,"abstract":"<p><p>Aberrant N-linked glycosylation is a prominent feature of cancers. Perturbance of oligosaccharide structure on cell surfaces directly affects key processes in tumor development and progression. In spite of the critical role played by N-linked glycans in tumor biology, the discovery of small molecules that specifically disturbs the N-linked glycans is still under investigation. To identify more saccharide-structure-perturbing compounds, a repurposed drug screen by using a library consisting of 1530 FDA-approved drugs was performed. Interestingly, an antipsychotic drug, penfluridol, was identified as being able to decrease cell surface wheat germ agglutinin staining. In the presence of penfluridol, cell membrane glycoproteins programmed death-ligand 1 (PD-L1) shifted to a lower molecular weight. Further studies demonstrated that penfluridol treatment caused an accumulation of high-mannose oligosaccharides, especially Man5-7GlcNAc2 glycan structures. Mechanistically, this effect is due to direct targeting of MAN1A1 mannosidase, a Golgi enzyme involved in N-glycan maturation. Moreover, we found that altered glycosylation of PD-L1 caused by penfluridol disrupted interactions between programmed cell death protein 1 and PD-L1, resulting in activation of T-cell tumor immunity. In a mouse xenograft and glioma model, penfluridol enhanced the antitumor effect of the anti-PD-L1 antibody in vivo. Overall, these findings revealed an important biological activity of the antipsychotic drug penfluridol as an inhibitor of glycan processing and proposed a repurposed use of penfluridol in antitumor therapy through activation of T-cell immunity.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"648-661"},"PeriodicalIF":5.3000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Antipsychotic Drug Penfluridol Inhibits N-Linked Glycoprotein Processing and Enhances T-cell-Mediated Tumor Immunity.\",\"authors\":\"Wenlong Xu, Yuqi Wang, Na Zhang, Xiaofeng Lin, Di Zhu, Cheng Shen, Xiaobo Wang, Haiyang Li, Jinjiang Xue, Qian Yu, Xinyi Lu, Lu Zhou, Qingli He, Zhijun Tang, Shaodan He, Jianjun Fan, Jianbo Pan, Jiangjiang Tang, Wei Jiang, Mingliang Ye, Fanghui Lu, Zengxia Li, Yongjun Dang\",\"doi\":\"10.1158/1535-7163.MCT-23-0449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aberrant N-linked glycosylation is a prominent feature of cancers. Perturbance of oligosaccharide structure on cell surfaces directly affects key processes in tumor development and progression. In spite of the critical role played by N-linked glycans in tumor biology, the discovery of small molecules that specifically disturbs the N-linked glycans is still under investigation. To identify more saccharide-structure-perturbing compounds, a repurposed drug screen by using a library consisting of 1530 FDA-approved drugs was performed. Interestingly, an antipsychotic drug, penfluridol, was identified as being able to decrease cell surface wheat germ agglutinin staining. In the presence of penfluridol, cell membrane glycoproteins programmed death-ligand 1 (PD-L1) shifted to a lower molecular weight. Further studies demonstrated that penfluridol treatment caused an accumulation of high-mannose oligosaccharides, especially Man5-7GlcNAc2 glycan structures. Mechanistically, this effect is due to direct targeting of MAN1A1 mannosidase, a Golgi enzyme involved in N-glycan maturation. Moreover, we found that altered glycosylation of PD-L1 caused by penfluridol disrupted interactions between programmed cell death protein 1 and PD-L1, resulting in activation of T-cell tumor immunity. In a mouse xenograft and glioma model, penfluridol enhanced the antitumor effect of the anti-PD-L1 antibody in vivo. Overall, these findings revealed an important biological activity of the antipsychotic drug penfluridol as an inhibitor of glycan processing and proposed a repurposed use of penfluridol in antitumor therapy through activation of T-cell immunity.</p>\",\"PeriodicalId\":18791,\"journal\":{\"name\":\"Molecular Cancer Therapeutics\",\"volume\":\" \",\"pages\":\"648-661\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1535-7163.MCT-23-0449\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-23-0449","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
The Antipsychotic Drug Penfluridol Inhibits N-Linked Glycoprotein Processing and Enhances T-cell-Mediated Tumor Immunity.
Aberrant N-linked glycosylation is a prominent feature of cancers. Perturbance of oligosaccharide structure on cell surfaces directly affects key processes in tumor development and progression. In spite of the critical role played by N-linked glycans in tumor biology, the discovery of small molecules that specifically disturbs the N-linked glycans is still under investigation. To identify more saccharide-structure-perturbing compounds, a repurposed drug screen by using a library consisting of 1530 FDA-approved drugs was performed. Interestingly, an antipsychotic drug, penfluridol, was identified as being able to decrease cell surface wheat germ agglutinin staining. In the presence of penfluridol, cell membrane glycoproteins programmed death-ligand 1 (PD-L1) shifted to a lower molecular weight. Further studies demonstrated that penfluridol treatment caused an accumulation of high-mannose oligosaccharides, especially Man5-7GlcNAc2 glycan structures. Mechanistically, this effect is due to direct targeting of MAN1A1 mannosidase, a Golgi enzyme involved in N-glycan maturation. Moreover, we found that altered glycosylation of PD-L1 caused by penfluridol disrupted interactions between programmed cell death protein 1 and PD-L1, resulting in activation of T-cell tumor immunity. In a mouse xenograft and glioma model, penfluridol enhanced the antitumor effect of the anti-PD-L1 antibody in vivo. Overall, these findings revealed an important biological activity of the antipsychotic drug penfluridol as an inhibitor of glycan processing and proposed a repurposed use of penfluridol in antitumor therapy through activation of T-cell immunity.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.