Phat Trong Huynh, Khanh Thi Le Tran, Tham Thi Hong Nguyen, Vinh Quang Lam, Ngan Thi Kim Phan, Thanh Vo Ke Ngo
{"title":"加钉金纳米金字塔的制备、表征及其对耐甲氧西林金黄色葡萄球菌和敏感金黄色葡萄球菌的抑菌作用。","authors":"Phat Trong Huynh, Khanh Thi Le Tran, Tham Thi Hong Nguyen, Vinh Quang Lam, Ngan Thi Kim Phan, Thanh Vo Ke Ngo","doi":"10.1186/s43141-023-00589-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This paper reports the preparation of a new family of spiked gold nanoparticles, spiked gold nanobipyramids (SNBPs). This protocol includes the process to synthesize gold nanobipyramids (NBPs) using combined seed-mediated and microwave-assisted method and procedure to form spikes on whole surface of gold nanobipyramid. We also evaluated the antibacterial activity against both methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) in various concentrations of SNBPs and NBPs by well diffusion assay, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) determination. The effect of SNBPs on exposed bacteria was observed by scanning electron microscopy.</p><p><strong>Results: </strong>The UV-Vis of purified NBPs exhibited two absorption bands located at 550 nm and 849 nm with yield of bipyramidal particles more than 90%. The average size of NBPs was 76.33 ± 10.11 nm in length and 26.57 ± 2.25 nm in diameter, respectively, while SNBPs were prolongated in length and achieved 182.37 ± 21.74 nm with multi-branches protruding whole surface areas. In antibacterial evaluations, SNBPs and NBPs showed antibacterial activity with MIC of 6.25 μl/ml and 12.5 μl/ml, respectively, for MSSA while 12.5 μl/ml and 25 μl/ml, respectively, for MRSA. Besides, MBC values of SNBPs and NBPs were found to be 12.5 μl/ml and 25 μl/ml, respectively, against MSSA while 25 μl/ml and 50 μl/ml, respectively, against MRSA. Furthermore, scanning electron microscopy observation showed the mechanism that SNBPs damaged the outer membrane, released cytoplasm, and altered the normal morphology of MRSA and MSSA, leading to bacterial death.</p><p><strong>Conclusions: </strong>This report suggests that these SNBPs are potential antibacterial agents that can be applied as antibacterial materials to inhibit the growth of human bacterial pathogen infections related to antibiotic-resistant bacteria.</p>","PeriodicalId":74026,"journal":{"name":"Journal, genetic engineering & biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651629/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preparation and characterization of spiked gold nanobipyramids and its antibacterial effect on methicillin-resistant Staphylococcus aureus and methicillin-sensitive Staphylococcus aureus.\",\"authors\":\"Phat Trong Huynh, Khanh Thi Le Tran, Tham Thi Hong Nguyen, Vinh Quang Lam, Ngan Thi Kim Phan, Thanh Vo Ke Ngo\",\"doi\":\"10.1186/s43141-023-00589-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This paper reports the preparation of a new family of spiked gold nanoparticles, spiked gold nanobipyramids (SNBPs). This protocol includes the process to synthesize gold nanobipyramids (NBPs) using combined seed-mediated and microwave-assisted method and procedure to form spikes on whole surface of gold nanobipyramid. We also evaluated the antibacterial activity against both methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) in various concentrations of SNBPs and NBPs by well diffusion assay, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) determination. The effect of SNBPs on exposed bacteria was observed by scanning electron microscopy.</p><p><strong>Results: </strong>The UV-Vis of purified NBPs exhibited two absorption bands located at 550 nm and 849 nm with yield of bipyramidal particles more than 90%. The average size of NBPs was 76.33 ± 10.11 nm in length and 26.57 ± 2.25 nm in diameter, respectively, while SNBPs were prolongated in length and achieved 182.37 ± 21.74 nm with multi-branches protruding whole surface areas. In antibacterial evaluations, SNBPs and NBPs showed antibacterial activity with MIC of 6.25 μl/ml and 12.5 μl/ml, respectively, for MSSA while 12.5 μl/ml and 25 μl/ml, respectively, for MRSA. Besides, MBC values of SNBPs and NBPs were found to be 12.5 μl/ml and 25 μl/ml, respectively, against MSSA while 25 μl/ml and 50 μl/ml, respectively, against MRSA. Furthermore, scanning electron microscopy observation showed the mechanism that SNBPs damaged the outer membrane, released cytoplasm, and altered the normal morphology of MRSA and MSSA, leading to bacterial death.</p><p><strong>Conclusions: </strong>This report suggests that these SNBPs are potential antibacterial agents that can be applied as antibacterial materials to inhibit the growth of human bacterial pathogen infections related to antibiotic-resistant bacteria.</p>\",\"PeriodicalId\":74026,\"journal\":{\"name\":\"Journal, genetic engineering & biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651629/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal, genetic engineering & biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43141-023-00589-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal, genetic engineering & biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43141-023-00589-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Preparation and characterization of spiked gold nanobipyramids and its antibacterial effect on methicillin-resistant Staphylococcus aureus and methicillin-sensitive Staphylococcus aureus.
Background: This paper reports the preparation of a new family of spiked gold nanoparticles, spiked gold nanobipyramids (SNBPs). This protocol includes the process to synthesize gold nanobipyramids (NBPs) using combined seed-mediated and microwave-assisted method and procedure to form spikes on whole surface of gold nanobipyramid. We also evaluated the antibacterial activity against both methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) in various concentrations of SNBPs and NBPs by well diffusion assay, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) determination. The effect of SNBPs on exposed bacteria was observed by scanning electron microscopy.
Results: The UV-Vis of purified NBPs exhibited two absorption bands located at 550 nm and 849 nm with yield of bipyramidal particles more than 90%. The average size of NBPs was 76.33 ± 10.11 nm in length and 26.57 ± 2.25 nm in diameter, respectively, while SNBPs were prolongated in length and achieved 182.37 ± 21.74 nm with multi-branches protruding whole surface areas. In antibacterial evaluations, SNBPs and NBPs showed antibacterial activity with MIC of 6.25 μl/ml and 12.5 μl/ml, respectively, for MSSA while 12.5 μl/ml and 25 μl/ml, respectively, for MRSA. Besides, MBC values of SNBPs and NBPs were found to be 12.5 μl/ml and 25 μl/ml, respectively, against MSSA while 25 μl/ml and 50 μl/ml, respectively, against MRSA. Furthermore, scanning electron microscopy observation showed the mechanism that SNBPs damaged the outer membrane, released cytoplasm, and altered the normal morphology of MRSA and MSSA, leading to bacterial death.
Conclusions: This report suggests that these SNBPs are potential antibacterial agents that can be applied as antibacterial materials to inhibit the growth of human bacterial pathogen infections related to antibiotic-resistant bacteria.