{"title":"拉伸对Wistar大鼠比目鱼肌基底膜结构的影响。","authors":"Yuji Kanazawa, Tatsuo Takahashi, Takashi Higuchi, Ryo Miyachi, Mamoru Nagano, Satoshi Koinuma, Yasufumi Shigeyoshi","doi":"10.1007/s00795-022-00335-8","DOIUrl":null,"url":null,"abstract":"<p><p>The basement membrane (BM), mainly composed of collagen IV, plays an important role in the maintenance, protection, and recovery of muscle fibers. Collagen IV expression is maintained by the balance between synthetic and degradative factors, which changes depending on the level of muscle activity. For example, exercise increases collagen IV synthesis, whereas inactivity decreases collagen IV synthesis. However, the effects of stretching on the BM structure remain unclear. Therefore, to investigate the effects of stretching on the BM of the skeletal muscle, we continuously applied stretching to the rat soleus muscle and examined the altered expression of BM-related factors and structure using quantitative polymerase chain reaction (qPCR), western blotting, zymography, immunohistochemistry, and electron microscopy. The results show that stretching increased the matrix metalloproteinase 14 (MMP14) expression and MMP2 activity, and decreased the collagen IV expression and width of the lamina densa in the soleus muscle. These results suggest that stretching promotes BM degradation in the rat soleus muscle. The findings of this study indicate a new influence of stretching on skeletal muscles, and may contribute to the new use of stretching in rehabilitation and sports fields.</p>","PeriodicalId":18338,"journal":{"name":"Medical Molecular Morphology","volume":"56 1","pages":"11-19"},"PeriodicalIF":1.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effects of stretching on the basement membrane structure in the soleus muscle of Wistar rats.\",\"authors\":\"Yuji Kanazawa, Tatsuo Takahashi, Takashi Higuchi, Ryo Miyachi, Mamoru Nagano, Satoshi Koinuma, Yasufumi Shigeyoshi\",\"doi\":\"10.1007/s00795-022-00335-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The basement membrane (BM), mainly composed of collagen IV, plays an important role in the maintenance, protection, and recovery of muscle fibers. Collagen IV expression is maintained by the balance between synthetic and degradative factors, which changes depending on the level of muscle activity. For example, exercise increases collagen IV synthesis, whereas inactivity decreases collagen IV synthesis. However, the effects of stretching on the BM structure remain unclear. Therefore, to investigate the effects of stretching on the BM of the skeletal muscle, we continuously applied stretching to the rat soleus muscle and examined the altered expression of BM-related factors and structure using quantitative polymerase chain reaction (qPCR), western blotting, zymography, immunohistochemistry, and electron microscopy. The results show that stretching increased the matrix metalloproteinase 14 (MMP14) expression and MMP2 activity, and decreased the collagen IV expression and width of the lamina densa in the soleus muscle. These results suggest that stretching promotes BM degradation in the rat soleus muscle. The findings of this study indicate a new influence of stretching on skeletal muscles, and may contribute to the new use of stretching in rehabilitation and sports fields.</p>\",\"PeriodicalId\":18338,\"journal\":{\"name\":\"Medical Molecular Morphology\",\"volume\":\"56 1\",\"pages\":\"11-19\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Molecular Morphology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00795-022-00335-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Molecular Morphology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00795-022-00335-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
Effects of stretching on the basement membrane structure in the soleus muscle of Wistar rats.
The basement membrane (BM), mainly composed of collagen IV, plays an important role in the maintenance, protection, and recovery of muscle fibers. Collagen IV expression is maintained by the balance between synthetic and degradative factors, which changes depending on the level of muscle activity. For example, exercise increases collagen IV synthesis, whereas inactivity decreases collagen IV synthesis. However, the effects of stretching on the BM structure remain unclear. Therefore, to investigate the effects of stretching on the BM of the skeletal muscle, we continuously applied stretching to the rat soleus muscle and examined the altered expression of BM-related factors and structure using quantitative polymerase chain reaction (qPCR), western blotting, zymography, immunohistochemistry, and electron microscopy. The results show that stretching increased the matrix metalloproteinase 14 (MMP14) expression and MMP2 activity, and decreased the collagen IV expression and width of the lamina densa in the soleus muscle. These results suggest that stretching promotes BM degradation in the rat soleus muscle. The findings of this study indicate a new influence of stretching on skeletal muscles, and may contribute to the new use of stretching in rehabilitation and sports fields.
期刊介绍:
Medical Molecular Morphology is an international forum for researchers in both basic and clinical medicine to present and discuss new research on the structural mechanisms and the processes of health and disease at the molecular level. The structures of molecules, organelles, cells, tissues, and organs determine their normal function. Disease is thus best understood in terms of structural changes in these different levels of biological organization, especially in molecules and molecular interactions as well as the cellular localization of chemical components. Medical Molecular Morphology welcomes articles on basic or clinical research in the fields of cell biology, molecular biology, and medical, veterinary, and dental sciences using techniques for structural research such as electron microscopy, confocal laser scanning microscopy, enzyme histochemistry, immunohistochemistry, radioautography, X-ray microanalysis, and in situ hybridization.
Manuscripts submitted for publication must contain a statement to the effect that all human studies have been reviewed by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in an appropriate version of the 1964 Declaration of Helsinki. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted.