Elliot D. Mock , Berend Gagestein, Mario van der Stelt
{"title":"阿南达胺和其他n -酰基乙醇胺:一类具有治疗机会的信号脂质","authors":"Elliot D. Mock , Berend Gagestein, Mario van der Stelt","doi":"10.1016/j.plipres.2022.101194","DOIUrl":null,"url":null,"abstract":"<div><p><em>N</em>-acylethanolamines (NAEs), including <em>N</em>-palmitoylethanolamine (PEA), <em>N</em>-oleoylethanolamine (OEA), <em>N</em>-arachidonoylethanolamine (AEA, anandamide), <em>N</em>-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB<sub>1</sub> and CB<sub>2</sub> receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.</p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"89 ","pages":"Article 101194"},"PeriodicalIF":14.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities\",\"authors\":\"Elliot D. Mock , Berend Gagestein, Mario van der Stelt\",\"doi\":\"10.1016/j.plipres.2022.101194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>N</em>-acylethanolamines (NAEs), including <em>N</em>-palmitoylethanolamine (PEA), <em>N</em>-oleoylethanolamine (OEA), <em>N</em>-arachidonoylethanolamine (AEA, anandamide), <em>N</em>-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB<sub>1</sub> and CB<sub>2</sub> receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.</p></div>\",\"PeriodicalId\":20650,\"journal\":{\"name\":\"Progress in lipid research\",\"volume\":\"89 \",\"pages\":\"Article 101194\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in lipid research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0163782722000492\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in lipid research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0163782722000492","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 20
摘要
n -酰基乙醇胺(NAEs),包括n -棕榈酰乙醇胺(PEA)、n -油基乙醇胺(OEA)、n -花生四烯醇乙醇胺(AEA, anandamide)、n -二十二碳六烯乙醇胺(DHEA, synaptamide)及其氧合代谢产物是一个脂质信使家族,在健康和疾病中具有多种功能,包括炎症、焦虑和能量代谢。NAEs通过激活各种G蛋白偶联受体(大麻素CB1和CB2受体,GPR55, GPR110, GPR119),离子通道(TRPV1)和核受体(PPAR-α和PPAR-γ)在脑和外周发挥其信号作用。氧合NAEs的生物学作用,如prostamides,羟化anandamide和DHEA衍生物,研究较少。越来越多的证据表明,NAEs及其氧化代谢物可能受到异常调节,或与肥胖、代谢综合征、癌症、神经炎症和肝硬化等疾病的严重程度有关。本文就NAE的生物合成和降解、脂氧合酶、环氧合酶和细胞色素p450的代谢以及这些信号脂质的生物学功能进行了综述。我们讨论了通过抑制内源性NAE的降解来调节其水平的最新发现和治疗潜力,目前正在对神经精神疾病进行临床评估。我们还强调NAE生物合成抑制是一个新兴的主题,在内源性大麻素和NAE信号传导方面具有治疗机会。
Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
期刊介绍:
The significance of lipids as a fundamental category of biological compounds has been widely acknowledged. The utilization of our understanding in the fields of biochemistry, chemistry, and physiology of lipids has continued to grow in biotechnology, the fats and oils industry, and medicine. Moreover, new aspects such as lipid biophysics, particularly related to membranes and lipoproteins, as well as basic research and applications of liposomes, have emerged. To keep up with these advancements, there is a need for a journal that can evaluate recent progress in specific areas and provide a historical perspective on current research. Progress in Lipid Research serves this purpose.