Hilde J.G. Smits , Justin E. Swartz , Marielle E.P. Philippens , Remco de Bree , Johannes H.A.M. Kaanders , Sjors A. Koppes , Gerben E. Breimer , Stefan M. Willems
{"title":"使用数字图像分析验证免疫组织化学染色喉部肿瘤组织自动阳性细胞和区域检测","authors":"Hilde J.G. Smits , Justin E. Swartz , Marielle E.P. Philippens , Remco de Bree , Johannes H.A.M. Kaanders , Sjors A. Koppes , Gerben E. Breimer , Stefan M. Willems","doi":"10.1016/j.jpi.2023.100198","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>This study aimed to validate a digital image analysis (DIA) workflow for automatic positive cell detection and positive region delineation for immunohistochemical hypoxia markers with a nuclear (hypoxia-inducible factor 1α [HIF-1α]) and a cytoplasmic (pimonidazole [PIMO]) staining pattern.</p></div><div><h3>Materials and methods</h3><p>101 tissue fragments from 44 laryngeal tumor biopsies were immunohistochemically stained for HIF-1α and PIMO. QuPath was used to determine the percentage of positive cells and to delineate positive regions automatically. For HIF-1α, only cells with strong staining were considered positive. Three dedicated head and neck pathologists scored the percentage of positive cells using three categories (0: <1%; 1: 1%–33%; 2: >33%;). The pathologists also delineated the positive regions on 14 corresponding PIMO and HIF-1α-stained fragments. The consensus between observers was used as the reference standard and was compared to the automatic delineation.</p></div><div><h3>Results</h3><p>Agreement between categorical positivity scores was 76.2% and 65.4% for PIMO and HIF-1α, respectively. In all cases of disagreement in HIF-1α fragments, the DIA underestimated the percentage of positive cells. As for the region detection, the DIA correctly detected most positive regions on PIMO fragments (false positive area=3.1%, false negative area=0.7%). In HIF-1α, the DIA missed some positive regions (false positive area=1.3%, false negative area=9.7%).</p></div><div><h3>Conclusions</h3><p>Positive cell and region detection on biopsy material is feasible, but further optimization is needed before unsupervised use. Validation at varying DAB staining intensities is hampered by lack of reliability of the gold standard (i.e., visual human interpretation). Nevertheless, the DIA method has the potential to be used as a tool to assist pathologists in the analysis of IHC staining.</p></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"14 ","pages":"Article 100198"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9930147/pdf/","citationCount":"0","resultStr":"{\"title\":\"Validation of automated positive cell and region detection of immunohistochemically stained laryngeal tumor tissue using digital image analysis\",\"authors\":\"Hilde J.G. Smits , Justin E. Swartz , Marielle E.P. Philippens , Remco de Bree , Johannes H.A.M. Kaanders , Sjors A. Koppes , Gerben E. Breimer , Stefan M. Willems\",\"doi\":\"10.1016/j.jpi.2023.100198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>This study aimed to validate a digital image analysis (DIA) workflow for automatic positive cell detection and positive region delineation for immunohistochemical hypoxia markers with a nuclear (hypoxia-inducible factor 1α [HIF-1α]) and a cytoplasmic (pimonidazole [PIMO]) staining pattern.</p></div><div><h3>Materials and methods</h3><p>101 tissue fragments from 44 laryngeal tumor biopsies were immunohistochemically stained for HIF-1α and PIMO. QuPath was used to determine the percentage of positive cells and to delineate positive regions automatically. For HIF-1α, only cells with strong staining were considered positive. Three dedicated head and neck pathologists scored the percentage of positive cells using three categories (0: <1%; 1: 1%–33%; 2: >33%;). The pathologists also delineated the positive regions on 14 corresponding PIMO and HIF-1α-stained fragments. The consensus between observers was used as the reference standard and was compared to the automatic delineation.</p></div><div><h3>Results</h3><p>Agreement between categorical positivity scores was 76.2% and 65.4% for PIMO and HIF-1α, respectively. In all cases of disagreement in HIF-1α fragments, the DIA underestimated the percentage of positive cells. As for the region detection, the DIA correctly detected most positive regions on PIMO fragments (false positive area=3.1%, false negative area=0.7%). In HIF-1α, the DIA missed some positive regions (false positive area=1.3%, false negative area=9.7%).</p></div><div><h3>Conclusions</h3><p>Positive cell and region detection on biopsy material is feasible, but further optimization is needed before unsupervised use. Validation at varying DAB staining intensities is hampered by lack of reliability of the gold standard (i.e., visual human interpretation). Nevertheless, the DIA method has the potential to be used as a tool to assist pathologists in the analysis of IHC staining.</p></div>\",\"PeriodicalId\":37769,\"journal\":{\"name\":\"Journal of Pathology Informatics\",\"volume\":\"14 \",\"pages\":\"Article 100198\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9930147/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pathology Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2153353923000123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353923000123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Validation of automated positive cell and region detection of immunohistochemically stained laryngeal tumor tissue using digital image analysis
Objectives
This study aimed to validate a digital image analysis (DIA) workflow for automatic positive cell detection and positive region delineation for immunohistochemical hypoxia markers with a nuclear (hypoxia-inducible factor 1α [HIF-1α]) and a cytoplasmic (pimonidazole [PIMO]) staining pattern.
Materials and methods
101 tissue fragments from 44 laryngeal tumor biopsies were immunohistochemically stained for HIF-1α and PIMO. QuPath was used to determine the percentage of positive cells and to delineate positive regions automatically. For HIF-1α, only cells with strong staining were considered positive. Three dedicated head and neck pathologists scored the percentage of positive cells using three categories (0: <1%; 1: 1%–33%; 2: >33%;). The pathologists also delineated the positive regions on 14 corresponding PIMO and HIF-1α-stained fragments. The consensus between observers was used as the reference standard and was compared to the automatic delineation.
Results
Agreement between categorical positivity scores was 76.2% and 65.4% for PIMO and HIF-1α, respectively. In all cases of disagreement in HIF-1α fragments, the DIA underestimated the percentage of positive cells. As for the region detection, the DIA correctly detected most positive regions on PIMO fragments (false positive area=3.1%, false negative area=0.7%). In HIF-1α, the DIA missed some positive regions (false positive area=1.3%, false negative area=9.7%).
Conclusions
Positive cell and region detection on biopsy material is feasible, but further optimization is needed before unsupervised use. Validation at varying DAB staining intensities is hampered by lack of reliability of the gold standard (i.e., visual human interpretation). Nevertheless, the DIA method has the potential to be used as a tool to assist pathologists in the analysis of IHC staining.
期刊介绍:
The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.