H Verma, J Doshi, G Narendra, B Raju, P K Singh, O Silakari
{"title":"能量分解和水交换分析研究SNP相关的DPD介导的5-FU抗性。","authors":"H Verma, J Doshi, G Narendra, B Raju, P K Singh, O Silakari","doi":"10.1080/1062936X.2023.2165146","DOIUrl":null,"url":null,"abstract":"<p><p>5-fluorouracil is an essential component of systemic chemotherapy for colon, breast, head, and neck cancer patients. However, tumoral overexpression of the dihydropyrimidine dehydrogenase has rendered 5-FU clinically ineffective by inactivating it to 5'-6'-dihydro fluorouracil. The responses to 5-FU in terms of efficacy and toxicity greatly differ depending upon the population group, because of variability in the DPD activity levels. In the current study, key active site amino acids involved in the 5-FU inactivation were investigated by modelling the 3D structure of human DPD in a complex with 5-FU. The identified amino acids were analyzed for their possible missense mutations available in dbSNP database. Out of 12 missense SNPs, four were validated either by sequencing in the 1000 Genomes project or frequency/genotype data. The recorded validated missense SNPs were further considered to analyze the effect of their respective alterations on 5-FU binding. Overall findings suggested that population bearing the Glu611Val DPD mutation (rs762523739) is highly vulnerable to 5-FU resistance. From the docking, electrostatic complementarity, dynamics, and energy decomposition analyses it was found that the above mutation showed superior scores than the wild DPD -5FU complex. Therefore, prescribing prodrug NUC-3373 or DPD inhibitors (Gimeracil/3-Cyano-2,6-Dihydroxypyridines) as adjuvant therapy may overcome the 5-FU resistance.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy decomposition and waterswapping analysis to investigate the SNP associated DPD mediated 5-FU resistance.\",\"authors\":\"H Verma, J Doshi, G Narendra, B Raju, P K Singh, O Silakari\",\"doi\":\"10.1080/1062936X.2023.2165146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>5-fluorouracil is an essential component of systemic chemotherapy for colon, breast, head, and neck cancer patients. However, tumoral overexpression of the dihydropyrimidine dehydrogenase has rendered 5-FU clinically ineffective by inactivating it to 5'-6'-dihydro fluorouracil. The responses to 5-FU in terms of efficacy and toxicity greatly differ depending upon the population group, because of variability in the DPD activity levels. In the current study, key active site amino acids involved in the 5-FU inactivation were investigated by modelling the 3D structure of human DPD in a complex with 5-FU. The identified amino acids were analyzed for their possible missense mutations available in dbSNP database. Out of 12 missense SNPs, four were validated either by sequencing in the 1000 Genomes project or frequency/genotype data. The recorded validated missense SNPs were further considered to analyze the effect of their respective alterations on 5-FU binding. Overall findings suggested that population bearing the Glu611Val DPD mutation (rs762523739) is highly vulnerable to 5-FU resistance. From the docking, electrostatic complementarity, dynamics, and energy decomposition analyses it was found that the above mutation showed superior scores than the wild DPD -5FU complex. Therefore, prescribing prodrug NUC-3373 or DPD inhibitors (Gimeracil/3-Cyano-2,6-Dihydroxypyridines) as adjuvant therapy may overcome the 5-FU resistance.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2023.2165146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2023.2165146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Energy decomposition and waterswapping analysis to investigate the SNP associated DPD mediated 5-FU resistance.
5-fluorouracil is an essential component of systemic chemotherapy for colon, breast, head, and neck cancer patients. However, tumoral overexpression of the dihydropyrimidine dehydrogenase has rendered 5-FU clinically ineffective by inactivating it to 5'-6'-dihydro fluorouracil. The responses to 5-FU in terms of efficacy and toxicity greatly differ depending upon the population group, because of variability in the DPD activity levels. In the current study, key active site amino acids involved in the 5-FU inactivation were investigated by modelling the 3D structure of human DPD in a complex with 5-FU. The identified amino acids were analyzed for their possible missense mutations available in dbSNP database. Out of 12 missense SNPs, four were validated either by sequencing in the 1000 Genomes project or frequency/genotype data. The recorded validated missense SNPs were further considered to analyze the effect of their respective alterations on 5-FU binding. Overall findings suggested that population bearing the Glu611Val DPD mutation (rs762523739) is highly vulnerable to 5-FU resistance. From the docking, electrostatic complementarity, dynamics, and energy decomposition analyses it was found that the above mutation showed superior scores than the wild DPD -5FU complex. Therefore, prescribing prodrug NUC-3373 or DPD inhibitors (Gimeracil/3-Cyano-2,6-Dihydroxypyridines) as adjuvant therapy may overcome the 5-FU resistance.