{"title":"综述论文:任务功能磁共振成像研究的报告实践。","authors":"Freya Acar, Camille Maumet, Talia Heuten, Maya Vervoort, Han Bossier, Ruth Seurinck, Beatrijs Moerkerke","doi":"10.1007/s12021-022-09606-2","DOIUrl":null,"url":null,"abstract":"<p><p>What are the standards for the reporting methods and results of fMRI studies, and how have they evolved over the years? To answer this question we reviewed 160 papers published between 2004 and 2019. Reporting styles for methods and results of fMRI studies can differ greatly between published studies. However, adequate reporting is essential for the comprehension, replication and reuse of the study (for instance in a meta-analysis). To aid authors in reporting the methods and results of their task-based fMRI study the COBIDAS report was published in 2016, which provides researchers with clear guidelines on how to report the design, acquisition, preprocessing, statistical analysis and results (including data sharing) of fMRI studies (Nichols et al. in Best Practices in Data Analysis and Sharing in Neuroimaging using fMRI, 2016). In the past reviews have been published that evaluate how fMRI methods are reported based on the 2008 guidelines, but they did not focus on how task based fMRI results are reported. This review updates reporting practices of fMRI methods, and adds an extra focus on how fMRI results are reported. We discuss reporting practices about the design stage, specific participant characteristics, scanner characteristics, data processing methods, data analysis methods and reported results.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"21 1","pages":"221-242"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Review Paper: Reporting Practices for Task fMRI Studies.\",\"authors\":\"Freya Acar, Camille Maumet, Talia Heuten, Maya Vervoort, Han Bossier, Ruth Seurinck, Beatrijs Moerkerke\",\"doi\":\"10.1007/s12021-022-09606-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>What are the standards for the reporting methods and results of fMRI studies, and how have they evolved over the years? To answer this question we reviewed 160 papers published between 2004 and 2019. Reporting styles for methods and results of fMRI studies can differ greatly between published studies. However, adequate reporting is essential for the comprehension, replication and reuse of the study (for instance in a meta-analysis). To aid authors in reporting the methods and results of their task-based fMRI study the COBIDAS report was published in 2016, which provides researchers with clear guidelines on how to report the design, acquisition, preprocessing, statistical analysis and results (including data sharing) of fMRI studies (Nichols et al. in Best Practices in Data Analysis and Sharing in Neuroimaging using fMRI, 2016). In the past reviews have been published that evaluate how fMRI methods are reported based on the 2008 guidelines, but they did not focus on how task based fMRI results are reported. This review updates reporting practices of fMRI methods, and adds an extra focus on how fMRI results are reported. We discuss reporting practices about the design stage, specific participant characteristics, scanner characteristics, data processing methods, data analysis methods and reported results.</p>\",\"PeriodicalId\":49761,\"journal\":{\"name\":\"Neuroinformatics\",\"volume\":\"21 1\",\"pages\":\"221-242\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12021-022-09606-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-022-09606-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Review Paper: Reporting Practices for Task fMRI Studies.
What are the standards for the reporting methods and results of fMRI studies, and how have they evolved over the years? To answer this question we reviewed 160 papers published between 2004 and 2019. Reporting styles for methods and results of fMRI studies can differ greatly between published studies. However, adequate reporting is essential for the comprehension, replication and reuse of the study (for instance in a meta-analysis). To aid authors in reporting the methods and results of their task-based fMRI study the COBIDAS report was published in 2016, which provides researchers with clear guidelines on how to report the design, acquisition, preprocessing, statistical analysis and results (including data sharing) of fMRI studies (Nichols et al. in Best Practices in Data Analysis and Sharing in Neuroimaging using fMRI, 2016). In the past reviews have been published that evaluate how fMRI methods are reported based on the 2008 guidelines, but they did not focus on how task based fMRI results are reported. This review updates reporting practices of fMRI methods, and adds an extra focus on how fMRI results are reported. We discuss reporting practices about the design stage, specific participant characteristics, scanner characteristics, data processing methods, data analysis methods and reported results.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.