{"title":"评估多频多层脑网络拓扑结构在不同研究人员选择路径中的可重复性。","authors":"Stavros I Dimitriadis","doi":"10.1007/s12021-022-09610-6","DOIUrl":null,"url":null,"abstract":"<p><p>There is a growing interest in the neuroscience community on the advantages of multilayer functional brain networks. Researchers usually treated different frequencies separately at distinct functional brain networks. However, there is strong evidence that these networks share complementary information while their interdependencies could reveal novel findings. For this purpose, neuroscientists adopt multilayer networks, which can be described mathematically as an extension of trivial single-layer networks. Multilayer networks have become popular in neuroscience due to their advantage to integrate different sources of information. Here, Ι will focus on the multi-frequency multilayer functional connectivity analysis on resting-state fMRI (rs-fMRI) recordings. However, constructing a multilayer network depends on selecting multiple pre-processing steps that can affect the final network topology. Here, I analyzed the rs-fMRI dataset from a single human performing scanning over a period of 18 months (84 scans in total), and the rs-fMRI dataset containing 25 subjects with 3 repeat scans. I focused on assessing the reproducibility of multi-frequency multilayer topologies exploring the effect of two filtering methods for extracting frequencies from BOLD activity, three connectivity estimators, with or without a topological filtering scheme, and two spatial scales. Finally, I untangled specific combinations of researchers' choices that yield consistently brain networks with repeatable topologies, giving me the chance to recommend best practices over consistent topologies.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"21 1","pages":"71-88"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the Repeatability of Multi-Frequency Multi-Layer Brain Network Topologies Across Alternative Researcher's Choice Paths.\",\"authors\":\"Stavros I Dimitriadis\",\"doi\":\"10.1007/s12021-022-09610-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is a growing interest in the neuroscience community on the advantages of multilayer functional brain networks. Researchers usually treated different frequencies separately at distinct functional brain networks. However, there is strong evidence that these networks share complementary information while their interdependencies could reveal novel findings. For this purpose, neuroscientists adopt multilayer networks, which can be described mathematically as an extension of trivial single-layer networks. Multilayer networks have become popular in neuroscience due to their advantage to integrate different sources of information. Here, Ι will focus on the multi-frequency multilayer functional connectivity analysis on resting-state fMRI (rs-fMRI) recordings. However, constructing a multilayer network depends on selecting multiple pre-processing steps that can affect the final network topology. Here, I analyzed the rs-fMRI dataset from a single human performing scanning over a period of 18 months (84 scans in total), and the rs-fMRI dataset containing 25 subjects with 3 repeat scans. I focused on assessing the reproducibility of multi-frequency multilayer topologies exploring the effect of two filtering methods for extracting frequencies from BOLD activity, three connectivity estimators, with or without a topological filtering scheme, and two spatial scales. Finally, I untangled specific combinations of researchers' choices that yield consistently brain networks with repeatable topologies, giving me the chance to recommend best practices over consistent topologies.</p>\",\"PeriodicalId\":49761,\"journal\":{\"name\":\"Neuroinformatics\",\"volume\":\"21 1\",\"pages\":\"71-88\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12021-022-09610-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-022-09610-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Assessing the Repeatability of Multi-Frequency Multi-Layer Brain Network Topologies Across Alternative Researcher's Choice Paths.
There is a growing interest in the neuroscience community on the advantages of multilayer functional brain networks. Researchers usually treated different frequencies separately at distinct functional brain networks. However, there is strong evidence that these networks share complementary information while their interdependencies could reveal novel findings. For this purpose, neuroscientists adopt multilayer networks, which can be described mathematically as an extension of trivial single-layer networks. Multilayer networks have become popular in neuroscience due to their advantage to integrate different sources of information. Here, Ι will focus on the multi-frequency multilayer functional connectivity analysis on resting-state fMRI (rs-fMRI) recordings. However, constructing a multilayer network depends on selecting multiple pre-processing steps that can affect the final network topology. Here, I analyzed the rs-fMRI dataset from a single human performing scanning over a period of 18 months (84 scans in total), and the rs-fMRI dataset containing 25 subjects with 3 repeat scans. I focused on assessing the reproducibility of multi-frequency multilayer topologies exploring the effect of two filtering methods for extracting frequencies from BOLD activity, three connectivity estimators, with or without a topological filtering scheme, and two spatial scales. Finally, I untangled specific combinations of researchers' choices that yield consistently brain networks with repeatable topologies, giving me the chance to recommend best practices over consistent topologies.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.