特征性的四联蛋白表达模式标志着爪蟾早期发育过程中的各种组织

IF 1.7 4区 生物学 Q4 CELL BIOLOGY Development Growth & Differentiation Pub Date : 2023-01-06 DOI:10.1111/dgd.12836
Sei Kuriyama, Masamitsu Tanaka
{"title":"特征性的四联蛋白表达模式标志着爪蟾早期发育过程中的各种组织","authors":"Sei Kuriyama,&nbsp;Masamitsu Tanaka","doi":"10.1111/dgd.12836","DOIUrl":null,"url":null,"abstract":"<p>The tetraspanins (Tspans) constitute a family of cell surface proteins with four transmembrane domains. Tspans have been found on the plasma membrane and on exosomes of various organelles. Reports on the function of Tspans during the early development of <i>Xenopus</i> have mainly focused on the expression of uroplakins in gametes. Although the roles of extracellular vesicles (EVs) including exosomes have been actively analyzed in cancer research, the contribution of EVs to early development is not well understood. This is because the diffusivity of EVs is not compatible with a very strict developmental process. In this study, we analyzed members of the Tspan family in early development of <i>Xenopus</i>. Expression was prominent in specific organs such as the notochord, eye, cranial neural crest cells (CNCs), trunk neural crest cells, placodes, and somites. We overexpressed several combinations of Tspans in CNCs in vitro and in vivo. Changing the partner changed the distribution of fluorescent-labeled Tspans. Therefore, it is suggested that expression of multiple Tspans in a particular tissue might produce heterogeneity of intercellular communication, which has not yet been recognized.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"65 2","pages":"109-119"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characteristic tetraspanin expression patterns mark various tissues during early Xenopus development\",\"authors\":\"Sei Kuriyama,&nbsp;Masamitsu Tanaka\",\"doi\":\"10.1111/dgd.12836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The tetraspanins (Tspans) constitute a family of cell surface proteins with four transmembrane domains. Tspans have been found on the plasma membrane and on exosomes of various organelles. Reports on the function of Tspans during the early development of <i>Xenopus</i> have mainly focused on the expression of uroplakins in gametes. Although the roles of extracellular vesicles (EVs) including exosomes have been actively analyzed in cancer research, the contribution of EVs to early development is not well understood. This is because the diffusivity of EVs is not compatible with a very strict developmental process. In this study, we analyzed members of the Tspan family in early development of <i>Xenopus</i>. Expression was prominent in specific organs such as the notochord, eye, cranial neural crest cells (CNCs), trunk neural crest cells, placodes, and somites. We overexpressed several combinations of Tspans in CNCs in vitro and in vivo. Changing the partner changed the distribution of fluorescent-labeled Tspans. Therefore, it is suggested that expression of multiple Tspans in a particular tissue might produce heterogeneity of intercellular communication, which has not yet been recognized.</p>\",\"PeriodicalId\":50589,\"journal\":{\"name\":\"Development Growth & Differentiation\",\"volume\":\"65 2\",\"pages\":\"109-119\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development Growth & Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/dgd.12836\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Growth & Differentiation","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/dgd.12836","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

四跨膜蛋白(Tspan)是一个具有四个跨膜结构域的细胞表面蛋白家族。Tspan已经在质膜和各种细胞器的外泌体上发现。关于Tspan在非洲爪蟾早期发育过程中的功能的报道主要集中在配子中尿蛋白的表达上。尽管在癌症研究中积极分析了包括外泌体在内的细胞外囊泡(EVs)的作用,但EVs对早期发展的贡献尚不清楚。这是因为电动汽车的扩散率与非常严格的发展过程不兼容。在本研究中,我们分析了非洲爪蟾早期发育的Tspan家族成员。在特定器官中表达显著,如脊索、眼睛、颅神经嵴细胞(CNCs)、干神经嵴细胞、斑块和体节。我们在体外和体内的CNCs中过表达了Tspan的几种组合。更换伴侣改变了荧光标记Tspan的分布。因此,有人认为,在特定组织中表达多个Tspan可能会产生细胞间通讯的异质性,这一点尚未得到认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characteristic tetraspanin expression patterns mark various tissues during early Xenopus development

The tetraspanins (Tspans) constitute a family of cell surface proteins with four transmembrane domains. Tspans have been found on the plasma membrane and on exosomes of various organelles. Reports on the function of Tspans during the early development of Xenopus have mainly focused on the expression of uroplakins in gametes. Although the roles of extracellular vesicles (EVs) including exosomes have been actively analyzed in cancer research, the contribution of EVs to early development is not well understood. This is because the diffusivity of EVs is not compatible with a very strict developmental process. In this study, we analyzed members of the Tspan family in early development of Xenopus. Expression was prominent in specific organs such as the notochord, eye, cranial neural crest cells (CNCs), trunk neural crest cells, placodes, and somites. We overexpressed several combinations of Tspans in CNCs in vitro and in vivo. Changing the partner changed the distribution of fluorescent-labeled Tspans. Therefore, it is suggested that expression of multiple Tspans in a particular tissue might produce heterogeneity of intercellular communication, which has not yet been recognized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Development Growth & Differentiation
Development Growth & Differentiation 生物-发育生物学
CiteScore
4.60
自引率
4.00%
发文量
62
审稿时长
6 months
期刊介绍: Development Growth & Differentiation (DGD) publishes three types of articles: original, resource, and review papers. Original papers are on any subjects having a context in development, growth, and differentiation processes in animals, plants, and microorganisms, dealing with molecular, genetic, cellular and organismal phenomena including metamorphosis and regeneration, while using experimental, theoretical, and bioinformatic approaches. Papers on other related fields are also welcome, such as stem cell biology, genomics, neuroscience, Evodevo, Ecodevo, and medical science as well as related methodology (new or revised techniques) and bioresources. Resource papers describe a dataset, such as whole genome sequences and expressed sequence tags (ESTs), with some biological insights, which should be valuable for studying the subjects as mentioned above. Submission of review papers is also encouraged, especially those providing a new scope based on the authors’ own study, or a summarization of their study series.
期刊最新文献
Quantitative in toto live imaging analysis of apical nuclear migration in the mouse telencephalic neuroepithelium. Labeling and sorting of avian primordial germ cells utilizing Lycopersicon Esculentum lectin. Transition from fetal to postnatal state in the heart: Crosstalk between metabolism and regeneration. Issue Information Mitochondrial DNA replication is essential for neurogenesis but not gliogenesis in fetal neural stem cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1