基于深度学习的COVID-19 ct扫描分类的重要纯权重迁移学习方法

Tejalal Choudhary, Shubham Gujar, Anurag Goswami, Vipul Mishra, Tapas Badal
{"title":"基于深度学习的COVID-19 ct扫描分类的重要纯权重迁移学习方法","authors":"Tejalal Choudhary,&nbsp;Shubham Gujar,&nbsp;Anurag Goswami,&nbsp;Vipul Mishra,&nbsp;Tapas Badal","doi":"10.1007/s10489-022-03893-7","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 has become a pandemic for the entire world, and it has significantly affected the world economy. The importance of early detection and treatment of the infection cannot be overstated. The traditional diagnosis techniques take more time in detecting the infection. Although, numerous deep learning-based automated solutions have recently been developed in this regard, nevertheless, the limitation of computational and battery power in resource-constrained devices makes it difficult to deploy trained models for real-time inference. In this paper, to detect the presence of COVID-19 in CT-scan images, an important weights-only transfer learning method has been proposed for devices with limited runt-time resources. In the proposed method, the pre-trained models are made point-of-care devices friendly by pruning less important weight parameters of the model. The experiments were performed on two popular VGG16 and ResNet34 models and the empirical results showed that pruned ResNet34 model achieved 95.47% accuracy, 0.9216 sensitivity, 0.9567 F-score, and 0.9942 specificity with 41.96% fewer FLOPs and 20.64% fewer weight parameters on the SARS-CoV-2 CT-scan dataset. The results of our experiments showed that the proposed method significantly reduces the run-time resource requirements of the computationally intensive models and makes them ready to be utilized on the point-of-care devices.</p>","PeriodicalId":72260,"journal":{"name":"Applied intelligence (Dordrecht, Netherlands)","volume":"53 6","pages":"7201-7215"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9289654/pdf/","citationCount":"14","resultStr":"{\"title\":\"Deep learning-based important weights-only transfer learning approach for COVID-19 CT-scan classification.\",\"authors\":\"Tejalal Choudhary,&nbsp;Shubham Gujar,&nbsp;Anurag Goswami,&nbsp;Vipul Mishra,&nbsp;Tapas Badal\",\"doi\":\"10.1007/s10489-022-03893-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>COVID-19 has become a pandemic for the entire world, and it has significantly affected the world economy. The importance of early detection and treatment of the infection cannot be overstated. The traditional diagnosis techniques take more time in detecting the infection. Although, numerous deep learning-based automated solutions have recently been developed in this regard, nevertheless, the limitation of computational and battery power in resource-constrained devices makes it difficult to deploy trained models for real-time inference. In this paper, to detect the presence of COVID-19 in CT-scan images, an important weights-only transfer learning method has been proposed for devices with limited runt-time resources. In the proposed method, the pre-trained models are made point-of-care devices friendly by pruning less important weight parameters of the model. The experiments were performed on two popular VGG16 and ResNet34 models and the empirical results showed that pruned ResNet34 model achieved 95.47% accuracy, 0.9216 sensitivity, 0.9567 F-score, and 0.9942 specificity with 41.96% fewer FLOPs and 20.64% fewer weight parameters on the SARS-CoV-2 CT-scan dataset. The results of our experiments showed that the proposed method significantly reduces the run-time resource requirements of the computationally intensive models and makes them ready to be utilized on the point-of-care devices.</p>\",\"PeriodicalId\":72260,\"journal\":{\"name\":\"Applied intelligence (Dordrecht, Netherlands)\",\"volume\":\"53 6\",\"pages\":\"7201-7215\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9289654/pdf/\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied intelligence (Dordrecht, Netherlands)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10489-022-03893-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied intelligence (Dordrecht, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10489-022-03893-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

新冠肺炎疫情已成为全球性大流行,对世界经济造成重大影响。早期发现和治疗感染的重要性怎么强调都不为过。传统的诊断技术在检测感染时花费较多的时间。尽管最近在这方面开发了许多基于深度学习的自动化解决方案,但是,在资源受限的设备中,计算和电池功率的限制使得难以部署训练有素的模型进行实时推理。为了检测ct扫描图像中是否存在COVID-19,本文针对运行时资源有限的设备提出了一种重要的仅权迁移学习方法。在提出的方法中,通过修剪模型中不太重要的权重参数,使预训练模型对医疗点设备友好。在两种常用的VGG16和ResNet34模型上进行了实验,实验结果表明,修剪后的ResNet34模型在SARS-CoV-2 ct扫描数据集上的准确率为95.47%,灵敏度为0.9216,f评分为0.9567,特异性为0.9942,FLOPs减少41.96%,权重参数减少20.64%。实验结果表明,所提出的方法显著降低了计算密集型模型的运行时资源需求,并使其准备好在护理点设备上使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning-based important weights-only transfer learning approach for COVID-19 CT-scan classification.

COVID-19 has become a pandemic for the entire world, and it has significantly affected the world economy. The importance of early detection and treatment of the infection cannot be overstated. The traditional diagnosis techniques take more time in detecting the infection. Although, numerous deep learning-based automated solutions have recently been developed in this regard, nevertheless, the limitation of computational and battery power in resource-constrained devices makes it difficult to deploy trained models for real-time inference. In this paper, to detect the presence of COVID-19 in CT-scan images, an important weights-only transfer learning method has been proposed for devices with limited runt-time resources. In the proposed method, the pre-trained models are made point-of-care devices friendly by pruning less important weight parameters of the model. The experiments were performed on two popular VGG16 and ResNet34 models and the empirical results showed that pruned ResNet34 model achieved 95.47% accuracy, 0.9216 sensitivity, 0.9567 F-score, and 0.9942 specificity with 41.96% fewer FLOPs and 20.64% fewer weight parameters on the SARS-CoV-2 CT-scan dataset. The results of our experiments showed that the proposed method significantly reduces the run-time resource requirements of the computationally intensive models and makes them ready to be utilized on the point-of-care devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Label recovery and label correlation co-learning for multi-view multi-label classification with incomplete labels. DC-CNN: Dual-channel Convolutional Neural Networks with attention-pooling for fake news detection. A dual alignment-based multi-source domain adaptation framework for motor imagery EEG classification. A novel hybrid multi-thread metaheuristic approach for fake news detection in social media. Front-end deep learning web apps development and deployment: a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1