Friedrich M Götz, Rakoen Maertens, Sahil Loomba, Sander van der Linden
{"title":"让算法说话:如何在心理量表开发中使用神经网络自动生成项目。","authors":"Friedrich M Götz, Rakoen Maertens, Sahil Loomba, Sander van der Linden","doi":"10.1037/met0000540","DOIUrl":null,"url":null,"abstract":"<p><p>Measurement is at the heart of scientific research. As many-perhaps most-psychological constructs cannot be directly observed, there is a steady demand for reliable self-report scales to assess latent constructs. However, scale development is a tedious process that requires researchers to produce good items in large quantities. In this tutorial, we introduce, explain, and apply the Psychometric Item Generator (PIG), an open-source, free-to-use, self-sufficient natural language processing algorithm that produces large-scale, human-like, customized text output within a few mouse clicks. The PIG is based on the GPT-2, a powerful generative language model, and runs on Google Colaboratory-an interactive virtual notebook environment that executes code on state-of-the-art virtual machines at no cost. Across two demonstrations and a preregistered five-pronged empirical validation with two Canadian samples (<i>N</i><sub>Sample 1</sub> = 501, <i>N</i><sub>Sample 2</sub> = 773), we show that the PIG is equally well-suited to generate large pools of face-valid items for novel constructs (i.e., wanderlust) and create parsimonious short scales of existing constructs (i.e., Big Five personality traits) that yield strong performances when tested in the wild and benchmarked against current gold standards for assessment. The PIG does not require any prior coding skills or access to computational resources and can easily be tailored to any desired context by simply switching out short linguistic prompts in a single line of code. In short, we present an effective, novel machine learning solution to an old psychological challenge. As such, the PIG will not require you to learn a new language-but instead, speak yours. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"494-518"},"PeriodicalIF":7.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Let the algorithm speak: How to use neural networks for automatic item generation in psychological scale development.\",\"authors\":\"Friedrich M Götz, Rakoen Maertens, Sahil Loomba, Sander van der Linden\",\"doi\":\"10.1037/met0000540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Measurement is at the heart of scientific research. As many-perhaps most-psychological constructs cannot be directly observed, there is a steady demand for reliable self-report scales to assess latent constructs. However, scale development is a tedious process that requires researchers to produce good items in large quantities. In this tutorial, we introduce, explain, and apply the Psychometric Item Generator (PIG), an open-source, free-to-use, self-sufficient natural language processing algorithm that produces large-scale, human-like, customized text output within a few mouse clicks. The PIG is based on the GPT-2, a powerful generative language model, and runs on Google Colaboratory-an interactive virtual notebook environment that executes code on state-of-the-art virtual machines at no cost. Across two demonstrations and a preregistered five-pronged empirical validation with two Canadian samples (<i>N</i><sub>Sample 1</sub> = 501, <i>N</i><sub>Sample 2</sub> = 773), we show that the PIG is equally well-suited to generate large pools of face-valid items for novel constructs (i.e., wanderlust) and create parsimonious short scales of existing constructs (i.e., Big Five personality traits) that yield strong performances when tested in the wild and benchmarked against current gold standards for assessment. The PIG does not require any prior coding skills or access to computational resources and can easily be tailored to any desired context by simply switching out short linguistic prompts in a single line of code. In short, we present an effective, novel machine learning solution to an old psychological challenge. As such, the PIG will not require you to learn a new language-but instead, speak yours. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"494-518\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000540\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000540","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Let the algorithm speak: How to use neural networks for automatic item generation in psychological scale development.
Measurement is at the heart of scientific research. As many-perhaps most-psychological constructs cannot be directly observed, there is a steady demand for reliable self-report scales to assess latent constructs. However, scale development is a tedious process that requires researchers to produce good items in large quantities. In this tutorial, we introduce, explain, and apply the Psychometric Item Generator (PIG), an open-source, free-to-use, self-sufficient natural language processing algorithm that produces large-scale, human-like, customized text output within a few mouse clicks. The PIG is based on the GPT-2, a powerful generative language model, and runs on Google Colaboratory-an interactive virtual notebook environment that executes code on state-of-the-art virtual machines at no cost. Across two demonstrations and a preregistered five-pronged empirical validation with two Canadian samples (NSample 1 = 501, NSample 2 = 773), we show that the PIG is equally well-suited to generate large pools of face-valid items for novel constructs (i.e., wanderlust) and create parsimonious short scales of existing constructs (i.e., Big Five personality traits) that yield strong performances when tested in the wild and benchmarked against current gold standards for assessment. The PIG does not require any prior coding skills or access to computational resources and can easily be tailored to any desired context by simply switching out short linguistic prompts in a single line of code. In short, we present an effective, novel machine learning solution to an old psychological challenge. As such, the PIG will not require you to learn a new language-but instead, speak yours. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.