奥卡姆剃刀如何指导人类决策。

Eugenio Piasini, Shuze Liu, Pratik Chaudhari, Vijay Balasubramanian, Joshua I Gold
{"title":"奥卡姆剃刀如何指导人类决策。","authors":"Eugenio Piasini, Shuze Liu, Pratik Chaudhari, Vijay Balasubramanian, Joshua I Gold","doi":"10.1101/2023.01.10.523479","DOIUrl":null,"url":null,"abstract":"<p><p>Occam's razor is the principle that, all else being equal, simpler explanations should be preferred over more complex ones. This principle is thought to guide human decision-making, but the nature of this guidance is not known. Here we used preregistered behavioral experiments to show that people tend to prefer the simpler of two alternative explanations for uncertain data. These preferences match predictions of formal theories of model selection that penalize excessive flexibility. These penalties emerge when considering not just the best explanation but the integral over all possible, relevant explanations. We further show that these simplicity preferences persist in humans, but not in certain artificial neural networks, even when they are maladaptive. Our results imply that principled notions of statistical model selection, including integrating over possible, latent causes to avoid overfitting to noisy observations, may play a central role in human decision-making.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882019/pdf/","citationCount":"0","resultStr":"{\"title\":\"How Occam's razor guides human decision-making.\",\"authors\":\"Eugenio Piasini, Shuze Liu, Pratik Chaudhari, Vijay Balasubramanian, Joshua I Gold\",\"doi\":\"10.1101/2023.01.10.523479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Occam's razor is the principle that, all else being equal, simpler explanations should be preferred over more complex ones. This principle is thought to guide human decision-making, but the nature of this guidance is not known. Here we used preregistered behavioral experiments to show that people tend to prefer the simpler of two alternative explanations for uncertain data. These preferences match predictions of formal theories of model selection that penalize excessive flexibility. These penalties emerge when considering not just the best explanation but the integral over all possible, relevant explanations. We further show that these simplicity preferences persist in humans, but not in certain artificial neural networks, even when they are maladaptive. Our results imply that principled notions of statistical model selection, including integrating over possible, latent causes to avoid overfitting to noisy observations, may play a central role in human decision-making.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882019/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.01.10.523479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.01.10.523479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

奥卡姆剃刀原理是,在其他条件相同的情况下,更简单的解释应该优先于更复杂的解释。这一原则被认为在人类的感知和决策中发挥了作用,但我们对简单性的假定偏好的性质尚不清楚。在这里,我们使用由统计模型选择的正式理论提供的预先注册的行为实验来表明,当面对不确定的证据时,人类受试者表现出对特定的、基于理论的替代解释的简单形式的偏好。这些形式的简单性可以根据统计模型的几何特征来理解,这些几何特征被视为概率分布空间中的流形,特别是它们的维度、边界、体积和曲率。由这些特征驱动的简单性偏好通常会提高决策准确性,因为它们最大限度地减少了对噪声观测的过度敏感(即过拟合)。人工神经网络也表现出了这些特征,这些特征被训练来优化可比任务的性能。然而,与人工网络不同的是,对于人类受试者来说,即使他们在任务训练和指令方面不适应,这些偏好也会持续存在。因此,这些偏好不仅仅是针对特定任务条件的瞬态优化,而是人类决策的一个更普遍的特征。总之,我们的结果表明,统计模型复杂性的原则概念与人类和机器决策具有直接、定量的相关性,并对我们倾向于从复杂世界的潜在特性中推断简单性的计算基础和行为益处建立了新的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How Occam's razor guides human decision-making.

Occam's razor is the principle that, all else being equal, simpler explanations should be preferred over more complex ones. This principle is thought to guide human decision-making, but the nature of this guidance is not known. Here we used preregistered behavioral experiments to show that people tend to prefer the simpler of two alternative explanations for uncertain data. These preferences match predictions of formal theories of model selection that penalize excessive flexibility. These penalties emerge when considering not just the best explanation but the integral over all possible, relevant explanations. We further show that these simplicity preferences persist in humans, but not in certain artificial neural networks, even when they are maladaptive. Our results imply that principled notions of statistical model selection, including integrating over possible, latent causes to avoid overfitting to noisy observations, may play a central role in human decision-making.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-supervised segmentation and characterization of fiber bundles in anatomic tracing data. Single neuron contributions to the auditory brainstem EEG. Neural substrates of cold nociception in Drosophila larva. Inversions Can Accumulate Balanced Sexual Antagonism: Evidence from Simulations and Drosophila Experiments. Programming megakaryocytes to produce engineered platelets for delivering non-native proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1