通过基因型-表现型联系了解大脑进化。

4区 医学 Q3 Neuroscience Progress in brain research Pub Date : 2023-01-01 DOI:10.1016/bs.pbr.2022.12.013
Danalaxshmi Shanen Ganapathee, Philipp Gunz
{"title":"通过基因型-表现型联系了解大脑进化。","authors":"Danalaxshmi Shanen Ganapathee,&nbsp;Philipp Gunz","doi":"10.1016/bs.pbr.2022.12.013","DOIUrl":null,"url":null,"abstract":"<p><p>It has recently become possible to start exploring how the genotype translates into human brain morphology and behavior by combining detailed genomic and phenotypic data from thousands of present-day people with archaic genomes of extinct humans, and gene expression data. As a starting point into this emerging interdisciplinary domain, we highlight current debates about which aspects of the modern human brain are unique. We review recent developments from (1) comparative primate neuroscience-a fast-growing field offering an invaluable framework for understanding general mechanisms and the evolution of human-specific traits. (2) paleoanthropology-based on evidence from endocranial imprints in fossil skulls, we trace the evolution from the ape-like brain phenotype of early hominins more than 3 million years ago to the unusual globular brain shape of present-day people. (3) Genomics of present-day and extinct humans. The morphological and genetic differences between modern humans and our closest extinct cousins, the Neandertals, offer important clues about the genetic underpinnings of brain morphology and behavior. The functional consequences of these genetic differences can be tested in animal models, and brain organoids.</p>","PeriodicalId":20598,"journal":{"name":"Progress in brain research","volume":"275 ","pages":"73-92"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Insights into brain evolution through the genotype-phenotype connection.\",\"authors\":\"Danalaxshmi Shanen Ganapathee,&nbsp;Philipp Gunz\",\"doi\":\"10.1016/bs.pbr.2022.12.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has recently become possible to start exploring how the genotype translates into human brain morphology and behavior by combining detailed genomic and phenotypic data from thousands of present-day people with archaic genomes of extinct humans, and gene expression data. As a starting point into this emerging interdisciplinary domain, we highlight current debates about which aspects of the modern human brain are unique. We review recent developments from (1) comparative primate neuroscience-a fast-growing field offering an invaluable framework for understanding general mechanisms and the evolution of human-specific traits. (2) paleoanthropology-based on evidence from endocranial imprints in fossil skulls, we trace the evolution from the ape-like brain phenotype of early hominins more than 3 million years ago to the unusual globular brain shape of present-day people. (3) Genomics of present-day and extinct humans. The morphological and genetic differences between modern humans and our closest extinct cousins, the Neandertals, offer important clues about the genetic underpinnings of brain morphology and behavior. The functional consequences of these genetic differences can be tested in animal models, and brain organoids.</p>\",\"PeriodicalId\":20598,\"journal\":{\"name\":\"Progress in brain research\",\"volume\":\"275 \",\"pages\":\"73-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in brain research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.pbr.2022.12.013\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in brain research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.pbr.2022.12.013","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 2

摘要

最近,通过结合来自数千名现代人的详细基因组和表型数据,以及来自已灭绝人类的古老基因组和基因表达数据,开始探索基因型如何转化为人类大脑形态和行为已经成为可能。作为进入这个新兴跨学科领域的起点,我们强调了当前关于现代人类大脑哪些方面是独特的争论。我们回顾了比较灵长类神经科学的最新进展,这是一个快速发展的领域,为理解一般机制和人类特异性特征的进化提供了宝贵的框架。(2)古人类学根据头骨化石的颅内印记证据,追溯了300多万年前早期人类的类人猿脑表型到现代人不寻常的球形脑形状的进化过程。(3)现代人和已灭绝人类的基因组学。现代人和我们的近亲尼安德特人在形态和基因上的差异,为研究大脑形态和行为的遗传基础提供了重要线索。这些基因差异的功能后果可以在动物模型和脑类器官中进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insights into brain evolution through the genotype-phenotype connection.

It has recently become possible to start exploring how the genotype translates into human brain morphology and behavior by combining detailed genomic and phenotypic data from thousands of present-day people with archaic genomes of extinct humans, and gene expression data. As a starting point into this emerging interdisciplinary domain, we highlight current debates about which aspects of the modern human brain are unique. We review recent developments from (1) comparative primate neuroscience-a fast-growing field offering an invaluable framework for understanding general mechanisms and the evolution of human-specific traits. (2) paleoanthropology-based on evidence from endocranial imprints in fossil skulls, we trace the evolution from the ape-like brain phenotype of early hominins more than 3 million years ago to the unusual globular brain shape of present-day people. (3) Genomics of present-day and extinct humans. The morphological and genetic differences between modern humans and our closest extinct cousins, the Neandertals, offer important clues about the genetic underpinnings of brain morphology and behavior. The functional consequences of these genetic differences can be tested in animal models, and brain organoids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in brain research
Progress in brain research 医学-神经科学
CiteScore
5.20
自引率
0.00%
发文量
174
审稿时长
6-12 weeks
期刊介绍: Progress in Brain Research is the most acclaimed and accomplished series in neuroscience. The serial is well-established as an extensive documentation of contemporary advances in the field. The volumes contain authoritative reviews and original articles by invited specialists. The rigorous editing of the volumes assures that they will appeal to all laboratory and clinical brain research workers in the various disciplines: neuroanatomy, neurophysiology, neuropharmacology, neuroendocrinology, neuropathology, basic neurology, biological psychiatry and the behavioral sciences.
期刊最新文献
Effects of volume-matched acute exercise on metacognition in late middle-aged adults: The roles of exercise intensity and duration. Electrophysiological investigation of active-assisted vs recumbent cycling: A pilot study in healthy older adults. Examining the effects of exercise with different cognitive loads on executive function: A systematic review. Exploring the influence of a 4-week aerobic exercise intervention on cognitive control processes in young adults: An SFT and DDM study. Investigating mechanisms of sport-related cognitive improvement using measures of motor learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1