J Wang, H Si, Y Liu, J Song, P Wang, H Luo, S Chen, G Fan, X Rao, Z Wang, S Liao
{"title":"新型德国小蠊驱虫剂桥环萜类衍生物的实验评价及构效关系分析。","authors":"J Wang, H Si, Y Liu, J Song, P Wang, H Luo, S Chen, G Fan, X Rao, Z Wang, S Liao","doi":"10.1080/1062936X.2022.2154838","DOIUrl":null,"url":null,"abstract":"<p><p>Cockroaches are urban pests that are very difficult to control. Using repellents is a green, safe and effective strategy for their control. In order to find novel cockroach repellents, the repellent activity of 45 bridged-ring terpenoid derivatives synthesized from β-pinene against <i>Blattella germanica</i> was tested. The relationship between the molecular structure of these bridged-ring terpenoid derivatives and their repellent activity against <i>Blattella germanica</i> was also analysed. The results show that some of the bridged-ring terpenoid derivatives exhibit good repellent activity against <i>Blattella germanica</i>, and six compounds (RR = 60.44-87.32%) show higher repellent activity against <i>Blattella germanica</i> than DEET (RR = 54.77%), making them promising for development as new cockroach repellents. Quantitative structure-activity relationship (QSAR) analysis revealed that the HOMO-1 energy, Kier and Hall index (order 2), Balaban index, and relative positive charged surface area of bridged-ring terpenoid derivatives have effects on repellent activity against <i>Blattella germanica</i>. The present study may provide a theoretical basis for the high-value use of β-pinene and can be helpful to the development of novel repellents against <i>Blattella germanica</i>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental evaluation and structure-activity relationship analysis of bridged-ring terpenoid derivatives as novel <i>Blattella germanica</i> repellent.\",\"authors\":\"J Wang, H Si, Y Liu, J Song, P Wang, H Luo, S Chen, G Fan, X Rao, Z Wang, S Liao\",\"doi\":\"10.1080/1062936X.2022.2154838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cockroaches are urban pests that are very difficult to control. Using repellents is a green, safe and effective strategy for their control. In order to find novel cockroach repellents, the repellent activity of 45 bridged-ring terpenoid derivatives synthesized from β-pinene against <i>Blattella germanica</i> was tested. The relationship between the molecular structure of these bridged-ring terpenoid derivatives and their repellent activity against <i>Blattella germanica</i> was also analysed. The results show that some of the bridged-ring terpenoid derivatives exhibit good repellent activity against <i>Blattella germanica</i>, and six compounds (RR = 60.44-87.32%) show higher repellent activity against <i>Blattella germanica</i> than DEET (RR = 54.77%), making them promising for development as new cockroach repellents. Quantitative structure-activity relationship (QSAR) analysis revealed that the HOMO-1 energy, Kier and Hall index (order 2), Balaban index, and relative positive charged surface area of bridged-ring terpenoid derivatives have effects on repellent activity against <i>Blattella germanica</i>. The present study may provide a theoretical basis for the high-value use of β-pinene and can be helpful to the development of novel repellents against <i>Blattella germanica</i>.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2022.2154838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2022.2154838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Experimental evaluation and structure-activity relationship analysis of bridged-ring terpenoid derivatives as novel Blattella germanica repellent.
Cockroaches are urban pests that are very difficult to control. Using repellents is a green, safe and effective strategy for their control. In order to find novel cockroach repellents, the repellent activity of 45 bridged-ring terpenoid derivatives synthesized from β-pinene against Blattella germanica was tested. The relationship between the molecular structure of these bridged-ring terpenoid derivatives and their repellent activity against Blattella germanica was also analysed. The results show that some of the bridged-ring terpenoid derivatives exhibit good repellent activity against Blattella germanica, and six compounds (RR = 60.44-87.32%) show higher repellent activity against Blattella germanica than DEET (RR = 54.77%), making them promising for development as new cockroach repellents. Quantitative structure-activity relationship (QSAR) analysis revealed that the HOMO-1 energy, Kier and Hall index (order 2), Balaban index, and relative positive charged surface area of bridged-ring terpenoid derivatives have effects on repellent activity against Blattella germanica. The present study may provide a theoretical basis for the high-value use of β-pinene and can be helpful to the development of novel repellents against Blattella germanica.