稀疏索引通过排序的1 -范数克隆。

IF 1.5 4区 经济学 Q3 BUSINESS, FINANCE Quantitative Finance Pub Date : 2022-01-01 DOI:10.1080/14697688.2021.1962539
Philipp J Kremer, Damian Brzyski, Małgorzata Bogdan, Sandra Paterlini
{"title":"稀疏索引通过排序的1 -范数克隆。","authors":"Philipp J Kremer,&nbsp;Damian Brzyski,&nbsp;Małgorzata Bogdan,&nbsp;Sandra Paterlini","doi":"10.1080/14697688.2021.1962539","DOIUrl":null,"url":null,"abstract":"<p><p>Index tracking and hedge fund replication aim at cloning the return time series properties of a given benchmark, by either using only a subset of its original constituents or by a set of risk factors. In this paper, we propose a model that relies on the <i>Sorted ℓ</i> <sub>1</sub> <i>Penalized Estimator</i>, called SLOPE, for index tracking and hedge fund replication. We show that SLOPE is capable of not only providing sparsity, but also to form groups among assets depending on their partial correlation with the index or the hedge fund return times series. The grouping structure can then be exploited to create individual investment strategies that allow building portfolios with a smaller number of active positions, but still comparable tracking properties. Considering equity index data and hedge fund returns, we discuss the real-world properties of SLOPE based approaches with respect to state-of-the art approaches.</p>","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"22 2","pages":"349-366"},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031478/pdf/nihms-1760168.pdf","citationCount":"11","resultStr":"{\"title\":\"Sparse Index Clones via the sorted <i>ℓ</i> <sub>1</sub> - Norm.\",\"authors\":\"Philipp J Kremer,&nbsp;Damian Brzyski,&nbsp;Małgorzata Bogdan,&nbsp;Sandra Paterlini\",\"doi\":\"10.1080/14697688.2021.1962539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Index tracking and hedge fund replication aim at cloning the return time series properties of a given benchmark, by either using only a subset of its original constituents or by a set of risk factors. In this paper, we propose a model that relies on the <i>Sorted ℓ</i> <sub>1</sub> <i>Penalized Estimator</i>, called SLOPE, for index tracking and hedge fund replication. We show that SLOPE is capable of not only providing sparsity, but also to form groups among assets depending on their partial correlation with the index or the hedge fund return times series. The grouping structure can then be exploited to create individual investment strategies that allow building portfolios with a smaller number of active positions, but still comparable tracking properties. Considering equity index data and hedge fund returns, we discuss the real-world properties of SLOPE based approaches with respect to state-of-the art approaches.</p>\",\"PeriodicalId\":20747,\"journal\":{\"name\":\"Quantitative Finance\",\"volume\":\"22 2\",\"pages\":\"349-366\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031478/pdf/nihms-1760168.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/14697688.2021.1962539\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/14697688.2021.1962539","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 11

摘要

指数跟踪和对冲基金复制的目的是克隆给定基准的回报时间序列属性,要么只使用原始成分的一个子集,要么使用一组风险因素。在本文中,我们提出了一个依赖于排序的1惩罚估计量(称为SLOPE)的模型,用于指数跟踪和对冲基金复制。我们表明,SLOPE不仅能够提供稀疏性,而且还能够根据资产与指数或对冲基金回报时间序列的部分相关性在资产之间形成组。然后可以利用分组结构来创建单独的投资策略,这些策略允许构建具有较少数量的活跃头寸的投资组合,但仍然具有可比较的跟踪属性。考虑到股票指数数据和对冲基金回报,我们讨论了基于斜率的方法相对于最先进方法的真实属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse Index Clones via the sorted 1 - Norm.

Index tracking and hedge fund replication aim at cloning the return time series properties of a given benchmark, by either using only a subset of its original constituents or by a set of risk factors. In this paper, we propose a model that relies on the Sorted ℓ 1 Penalized Estimator, called SLOPE, for index tracking and hedge fund replication. We show that SLOPE is capable of not only providing sparsity, but also to form groups among assets depending on their partial correlation with the index or the hedge fund return times series. The grouping structure can then be exploited to create individual investment strategies that allow building portfolios with a smaller number of active positions, but still comparable tracking properties. Considering equity index data and hedge fund returns, we discuss the real-world properties of SLOPE based approaches with respect to state-of-the art approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantitative Finance
Quantitative Finance 社会科学-数学跨学科应用
CiteScore
3.20
自引率
7.70%
发文量
102
审稿时长
4-8 weeks
期刊介绍: The frontiers of finance are shifting rapidly, driven in part by the increasing use of quantitative methods in the field. Quantitative Finance welcomes original research articles that reflect the dynamism of this area. The journal provides an interdisciplinary forum for presenting both theoretical and empirical approaches and offers rapid publication of original new work with high standards of quality. The readership is broad, embracing researchers and practitioners across a range of specialisms and within a variety of organizations. All articles should aim to be of interest to this broad readership.
期刊最新文献
DeepVol: volatility forecasting from high-frequency data with dilated causal convolutions. An early indicator for anomalous stock market performance Physics-informed convolutional transformer for predicting volatility surface Deep attentive survival analysis in limit order books: estimating fill probabilities with convolutional-transformers Estimating correlations among elliptically distributed random variables under any form of heteroskedasticity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1