首页 > 最新文献

Quantitative Finance最新文献

英文 中文
Higher order approximation of option prices in Barndorff-Nielsen and Shephard models 巴恩多夫-尼尔森和谢泼德模型中期权价格的高阶近似值
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2024-09-10 DOI: 10.1080/14697688.2024.2394220
Álvaro Guinea Juliá, Alet Roux
We present an approximation method based on the mixing formula [Hull, J. and White, A., The pricing of options on assets with stochastic volatilities. J. Finance, 1987, 42, 281–300; Romano, M. and ...
我们提出了一种基于混合公式的近似方法[Hull, J. 和 White, A., The pricing of options on assets with stochastic volatilities.J. Finance, 1987, 42, 281-300; Romano, M. and ...
{"title":"Higher order approximation of option prices in Barndorff-Nielsen and Shephard models","authors":"Álvaro Guinea Juliá, Alet Roux","doi":"10.1080/14697688.2024.2394220","DOIUrl":"https://doi.org/10.1080/14697688.2024.2394220","url":null,"abstract":"We present an approximation method based on the mixing formula [Hull, J. and White, A., The pricing of options on assets with stochastic volatilities. J. Finance, 1987, 42, 281–300; Romano, M. and ...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"190 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DeepVol: volatility forecasting from high-frequency data with dilated causal convolutions. DeepVol:利用扩张因果卷积从高频数据中预测波动率。
IF 1.5 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2024-09-05 eCollection Date: 2024-01-01 DOI: 10.1080/14697688.2024.2387222
Fernando Moreno-Pino, Stefan Zohren

Volatility forecasts play a central role among equity risk measures. Besides traditional statistical models, modern forecasting techniques based on machine learning can be employed when treating volatility as a univariate, daily time-series. Moreover, econometric studies have shown that increasing the number of daily observations with high-frequency intraday data helps to improve volatility predictions. In this work, we propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility. Our empirical findings demonstrate that dilated convolutional filters are highly effective at extracting relevant information from intraday financial time-series, proving that this architecture can effectively leverage predictive information present in high-frequency data that would otherwise be lost if realised measures were precomputed. Simultaneously, dilated convolutional filters trained with intraday high-frequency data help us avoid the limitations of models that use daily data, such as model misspecification or manually designed handcrafted features, whose devise involves optimising the trade-off between accuracy and computational efficiency and makes models prone to lack of adaptation into changing circumstances. In our analysis, we use two years of intraday data from NASDAQ-100 to evaluate the performance of DeepVol. Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data, resulting in more accurate predictions compared to traditional methodologies and producing more accurate risk measures.

波动率预测在股票风险度量中起着核心作用。除了传统的统计模型,在将波动率作为单变量日时间序列处理时,还可以采用基于机器学习的现代预测技术。此外,计量经济学研究表明,增加日内高频数据的日观测次数有助于改进波动率预测。在这项工作中,我们提出了 DeepVol 模型,这是一个基于稀释因果卷积的模型,它使用高频数据来预测日前波动率。我们的实证研究结果表明,稀释卷积滤波器能非常有效地从日内金融时间序列中提取相关信息,证明这种架构能有效地利用高频数据中的预测信息,而如果预先计算变现指标,这些信息就会丢失。同时,使用日内高频数据训练的扩张卷积滤波器可以帮助我们避免使用日内数据模型的局限性,如模型错误规范或人工设计的手工特征,其设计涉及优化准确性和计算效率之间的权衡,并使模型容易缺乏对不断变化环境的适应性。在我们的分析中,我们使用纳斯达克-100 指数两年的盘中数据来评估 DeepVol 的性能。 我们的实证结果表明,所提出的基于深度学习的方法能有效地从高频数据中学习全局特征,与传统方法相比,它能带来更准确的预测,并产生更准确的风险度量。
{"title":"DeepVol: volatility forecasting from high-frequency data with dilated causal convolutions.","authors":"Fernando Moreno-Pino, Stefan Zohren","doi":"10.1080/14697688.2024.2387222","DOIUrl":"https://doi.org/10.1080/14697688.2024.2387222","url":null,"abstract":"<p><p>Volatility forecasts play a central role among equity risk measures. Besides traditional statistical models, modern forecasting techniques based on machine learning can be employed when treating volatility as a univariate, daily time-series. Moreover, econometric studies have shown that increasing the number of daily observations with high-frequency intraday data helps to improve volatility predictions. In this work, we propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility. Our empirical findings demonstrate that dilated convolutional filters are highly effective at extracting relevant information from intraday financial time-series, proving that this architecture can effectively leverage predictive information present in high-frequency data that would otherwise be lost if realised measures were precomputed. Simultaneously, dilated convolutional filters trained with intraday high-frequency data help us avoid the limitations of models that use daily data, such as model misspecification or manually designed handcrafted features, whose devise involves optimising the trade-off between accuracy and computational efficiency and makes models prone to lack of adaptation into changing circumstances. In our analysis, we use two years of intraday data from NASDAQ-100 to evaluate the performance of DeepVol. Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data, resulting in more accurate predictions compared to traditional methodologies and producing more accurate risk measures.</p>","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"24 8","pages":"1105-1127"},"PeriodicalIF":1.5,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient option pricing in the rough Heston model using weak simulation schemes 利用弱模拟方案在粗略的赫斯顿模型中高效地进行期权定价
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2024-09-02 DOI: 10.1080/14697688.2024.2391523
Christian Bayer, Simon Breneis
We provide an efficient and accurate simulation scheme for the rough Heston model in the standard (H>0) as well as the hyper-rough regime (H>−1/2). The scheme is based on low-dimensional Markovian ...
我们为标准(H>0)和超粗糙系统(H>-1/2)中的粗糙海斯顿模型提供了一种高效、精确的模拟方案。该方案基于低维马尔可夫...
{"title":"Efficient option pricing in the rough Heston model using weak simulation schemes","authors":"Christian Bayer, Simon Breneis","doi":"10.1080/14697688.2024.2391523","DOIUrl":"https://doi.org/10.1080/14697688.2024.2391523","url":null,"abstract":"We provide an efficient and accurate simulation scheme for the rough Heston model in the standard (H>0) as well as the hyper-rough regime (H>−1/2). The scheme is based on low-dimensional Markovian ...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"3 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GDP-linked bonds as a new asset class 与 GDP 挂钩的债券作为一种新的资产类别
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2024-08-30 DOI: 10.1080/14697688.2024.2386323
Ellie Papavassiliou, Nikolas Topaloglou, Stavros A. Zenios
Using stochastic spanning tests without any distributional assumptions on returns, we show that the two classes of GDP-linked bonds, floaters and linkers, are not spanned by a broad benchmark set o...
我们使用随机跨度测试,在不对回报率进行任何分布假设的情况下,证明浮动债券和挂钩债券这两类与 GDP 挂钩的债券没有被一组广泛的基准债券跨度所跨度。
{"title":"GDP-linked bonds as a new asset class","authors":"Ellie Papavassiliou, Nikolas Topaloglou, Stavros A. Zenios","doi":"10.1080/14697688.2024.2386323","DOIUrl":"https://doi.org/10.1080/14697688.2024.2386323","url":null,"abstract":"Using stochastic spanning tests without any distributional assumptions on returns, we show that the two classes of GDP-linked bonds, floaters and linkers, are not spanned by a broad benchmark set o...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"19 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural network empowered liquidity pricing in a two-price economy under conic finance settings 圆锥金融环境下双价经济中的神经网络赋权流动性定价
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2024-08-29 DOI: 10.1080/14697688.2024.2390947
Matteo Michielon, Diogo Franquinho, Alessandro Gentile, Asma Khedher, Peter Spreij
In the article at hand neural networks are used to model liquidity in financial markets, under conic finance settings, in two different contexts. That is, on the one hand this paper illustrates how...
在本文中,神经网络被用于在两种不同的情况下,在圆锥金融环境下对金融市场的流动性进行建模。也就是说,一方面,本文说明了神经网络如何...
{"title":"Neural network empowered liquidity pricing in a two-price economy under conic finance settings","authors":"Matteo Michielon, Diogo Franquinho, Alessandro Gentile, Asma Khedher, Peter Spreij","doi":"10.1080/14697688.2024.2390947","DOIUrl":"https://doi.org/10.1080/14697688.2024.2390947","url":null,"abstract":"In the article at hand neural networks are used to model liquidity in financial markets, under conic finance settings, in two different contexts. That is, on the one hand this paper illustrates how...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"45 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FX Open Forward 远期外汇敞口
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2024-08-27 DOI: 10.1080/14697688.2024.2388802
Julien Hok, Alex S.L. Tse
FX Open Forward is a derivative instrument where the contract holder has the obligation to purchase a specific amount of foreign currency under a fixed exchange rate by the contract expiry date. In...
外汇远期敞口合约是一种衍生工具,合约持有者有义务在合约到期日之前按照固定汇率购买一定数量的外汇。在...
{"title":"FX Open Forward","authors":"Julien Hok, Alex S.L. Tse","doi":"10.1080/14697688.2024.2388802","DOIUrl":"https://doi.org/10.1080/14697688.2024.2388802","url":null,"abstract":"FX Open Forward is a derivative instrument where the contract holder has the obligation to purchase a specific amount of foreign currency under a fixed exchange rate by the contract expiry date. In...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"31 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asset prices when large investors interact strategically 大型投资者进行战略互动时的资产价格
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2024-08-19 DOI: 10.1080/14697688.2024.2387821
Giuliano Curatola
This paper examines equilibrium asset prices and leverage in an exchange economy populated with both retail and institutional investors. Institutional investors influence the price of the stocks th...
本文探讨了在散户和机构投资者共同参与的交易所经济中的均衡资产价格和杠杆作用。机构投资者会影响股票价格,而散户投资者则会影响股票价格。
{"title":"Asset prices when large investors interact strategically","authors":"Giuliano Curatola","doi":"10.1080/14697688.2024.2387821","DOIUrl":"https://doi.org/10.1080/14697688.2024.2387821","url":null,"abstract":"This paper examines equilibrium asset prices and leverage in an exchange economy populated with both retail and institutional investors. Institutional investors influence the price of the stocks th...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"8 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Machine Learning and Optimisation in Finance 量子机器学习与金融优化
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2024-08-15 DOI: 10.1080/14697688.2024.2375260
Tushar Vaidya
Published in Quantitative Finance (Ahead of Print, 2024)
发表于《定量金融》(2024 年提前出版)
{"title":"Quantum Machine Learning and Optimisation in Finance","authors":"Tushar Vaidya","doi":"10.1080/14697688.2024.2375260","DOIUrl":"https://doi.org/10.1080/14697688.2024.2375260","url":null,"abstract":"Published in Quantitative Finance (Ahead of Print, 2024)","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"73 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Portfolio and reinsurance optimization under unknown market price of risk 未知市场风险价格下的投资组合和再保险优化
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2024-08-15 DOI: 10.1080/14697688.2024.2384392
Claudia Ceci, Katia Colaneri
We investigate the optimal investment-and-reinsurance problem for insurance company with partial information on the market price of the risk. Through the use of filtering techniques, we convert the...
我们研究了保险公司在掌握部分风险市场价格信息的情况下的最优投资和再保险问题。通过使用过滤技术,我们将...
{"title":"Portfolio and reinsurance optimization under unknown market price of risk","authors":"Claudia Ceci, Katia Colaneri","doi":"10.1080/14697688.2024.2384392","DOIUrl":"https://doi.org/10.1080/14697688.2024.2384392","url":null,"abstract":"We investigate the optimal investment-and-reinsurance problem for insurance company with partial information on the market price of the risk. Through the use of filtering techniques, we convert the...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"64 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Risk factor aggregation and stress testing 风险因素汇总和压力测试
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2024-07-25 DOI: 10.1080/14697688.2024.2377735
Natalie Packham
Stress testing refers to the application of adverse financial or macroeconomic scenarios to a portfolio. For this purpose, financial or macroeconomic risk factors are linked with asset returns, typ...
压力测试是指将不利的金融或宏观经济情景应用于投资组合。为此,将金融或宏观经济风险因素与资产回报、类型和风险程度联系起来。
{"title":"Risk factor aggregation and stress testing","authors":"Natalie Packham","doi":"10.1080/14697688.2024.2377735","DOIUrl":"https://doi.org/10.1080/14697688.2024.2377735","url":null,"abstract":"Stress testing refers to the application of adverse financial or macroeconomic scenarios to a portfolio. For this purpose, financial or macroeconomic risk factors are linked with asset returns, typ...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"28 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Quantitative Finance
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1