首页 > 最新文献

Quantitative Finance最新文献

英文 中文
DeepVol: volatility forecasting from high-frequency data with dilated causal convolutions. DeepVol:利用扩张因果卷积从高频数据中预测波动率。
IF 1.5 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2024-09-05 eCollection Date: 2024-01-01 DOI: 10.1080/14697688.2024.2387222
Fernando Moreno-Pino, Stefan Zohren

Volatility forecasts play a central role among equity risk measures. Besides traditional statistical models, modern forecasting techniques based on machine learning can be employed when treating volatility as a univariate, daily time-series. Moreover, econometric studies have shown that increasing the number of daily observations with high-frequency intraday data helps to improve volatility predictions. In this work, we propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility. Our empirical findings demonstrate that dilated convolutional filters are highly effective at extracting relevant information from intraday financial time-series, proving that this architecture can effectively leverage predictive information present in high-frequency data that would otherwise be lost if realised measures were precomputed. Simultaneously, dilated convolutional filters trained with intraday high-frequency data help us avoid the limitations of models that use daily data, such as model misspecification or manually designed handcrafted features, whose devise involves optimising the trade-off between accuracy and computational efficiency and makes models prone to lack of adaptation into changing circumstances. In our analysis, we use two years of intraday data from NASDAQ-100 to evaluate the performance of DeepVol. Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data, resulting in more accurate predictions compared to traditional methodologies and producing more accurate risk measures.

波动率预测在股票风险度量中起着核心作用。除了传统的统计模型,在将波动率作为单变量日时间序列处理时,还可以采用基于机器学习的现代预测技术。此外,计量经济学研究表明,增加日内高频数据的日观测次数有助于改进波动率预测。在这项工作中,我们提出了 DeepVol 模型,这是一个基于稀释因果卷积的模型,它使用高频数据来预测日前波动率。我们的实证研究结果表明,稀释卷积滤波器能非常有效地从日内金融时间序列中提取相关信息,证明这种架构能有效地利用高频数据中的预测信息,而如果预先计算变现指标,这些信息就会丢失。同时,使用日内高频数据训练的扩张卷积滤波器可以帮助我们避免使用日内数据模型的局限性,如模型错误规范或人工设计的手工特征,其设计涉及优化准确性和计算效率之间的权衡,并使模型容易缺乏对不断变化环境的适应性。在我们的分析中,我们使用纳斯达克-100 指数两年的盘中数据来评估 DeepVol 的性能。 我们的实证结果表明,所提出的基于深度学习的方法能有效地从高频数据中学习全局特征,与传统方法相比,它能带来更准确的预测,并产生更准确的风险度量。
{"title":"DeepVol: volatility forecasting from high-frequency data with dilated causal convolutions.","authors":"Fernando Moreno-Pino, Stefan Zohren","doi":"10.1080/14697688.2024.2387222","DOIUrl":"https://doi.org/10.1080/14697688.2024.2387222","url":null,"abstract":"<p><p>Volatility forecasts play a central role among equity risk measures. Besides traditional statistical models, modern forecasting techniques based on machine learning can be employed when treating volatility as a univariate, daily time-series. Moreover, econometric studies have shown that increasing the number of daily observations with high-frequency intraday data helps to improve volatility predictions. In this work, we propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility. Our empirical findings demonstrate that dilated convolutional filters are highly effective at extracting relevant information from intraday financial time-series, proving that this architecture can effectively leverage predictive information present in high-frequency data that would otherwise be lost if realised measures were precomputed. Simultaneously, dilated convolutional filters trained with intraday high-frequency data help us avoid the limitations of models that use daily data, such as model misspecification or manually designed handcrafted features, whose devise involves optimising the trade-off between accuracy and computational efficiency and makes models prone to lack of adaptation into changing circumstances. In our analysis, we use two years of intraday data from NASDAQ-100 to evaluate the performance of DeepVol. Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data, resulting in more accurate predictions compared to traditional methodologies and producing more accurate risk measures.</p>","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"24 8","pages":"1105-1127"},"PeriodicalIF":1.5,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An early indicator for anomalous stock market performance 股市异常表现的早期指标
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2024-01-10 DOI: 10.1080/14697688.2023.2281529
Marlon Fritz, Thomas Gries, Lukas Wiechers
We propose an indicator for detecting anomalous stock market valuation in real time such that market participants receive timely signals so as to be able to take stabilizing action. Unlike existing...
我们提出了一种实时检测股市异常估值的指标,以便市场参与者及时收到信号,从而采取稳定行动。不同于现有的...
{"title":"An early indicator for anomalous stock market performance","authors":"Marlon Fritz, Thomas Gries, Lukas Wiechers","doi":"10.1080/14697688.2023.2281529","DOIUrl":"https://doi.org/10.1080/14697688.2023.2281529","url":null,"abstract":"We propose an indicator for detecting anomalous stock market valuation in real time such that market participants receive timely signals so as to be able to take stabilizing action. Unlike existing...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"52 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139411865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics-informed convolutional transformer for predicting volatility surface 预测波动面的物理信息卷积变换器
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2024-01-09 DOI: 10.1080/14697688.2023.2294799
Soohan Kim, Seok-Bae Yun, Hyeong-Ohk Bae, Muhyun Lee, Youngjoon Hong
Predicting volatility is important for asset predicting, option pricing and hedging strategies because it cannot be directly observed in the financial market. The dynamics of the volatility surface...
预测波动率对于资产预测、期权定价和对冲策略非常重要,因为波动率无法在金融市场上直接观测到。波动率表面的动态...
{"title":"Physics-informed convolutional transformer for predicting volatility surface","authors":"Soohan Kim, Seok-Bae Yun, Hyeong-Ohk Bae, Muhyun Lee, Youngjoon Hong","doi":"10.1080/14697688.2023.2294799","DOIUrl":"https://doi.org/10.1080/14697688.2023.2294799","url":null,"abstract":"Predicting volatility is important for asset predicting, option pricing and hedging strategies because it cannot be directly observed in the financial market. The dynamics of the volatility surface...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"69 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139411830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating correlations among elliptically distributed random variables under any form of heteroskedasticity 在任何形式的异方差下估算椭圆分布随机变量之间的相关性
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2024-01-04 DOI: 10.1080/14697688.2023.2278502
Matteo Pelagatti, Giacomo Sbrana
The paper introduces a semiparametric estimator of the correlations among elliptically distributed random variables invariant to any form of heteroscedasticity, robust to outliers, and asymptotical...
本文介绍了一种椭圆分布随机变量间相关性的半参数估计器,该估计器对任何形式的异方差都是不变的,对异常值都是稳健的,并且是渐近的。
{"title":"Estimating correlations among elliptically distributed random variables under any form of heteroskedasticity","authors":"Matteo Pelagatti, Giacomo Sbrana","doi":"10.1080/14697688.2023.2278502","DOIUrl":"https://doi.org/10.1080/14697688.2023.2278502","url":null,"abstract":"The paper introduces a semiparametric estimator of the correlations among elliptically distributed random variables invariant to any form of heteroscedasticity, robust to outliers, and asymptotical...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"11 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139374094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep attentive survival analysis in limit order books: estimating fill probabilities with convolutional-transformers 限价订单簿中的深度存活分析:利用卷积变换器估算成交概率
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2024-01-04 DOI: 10.1080/14697688.2023.2286351
Álvaro Arroyo, Álvaro Cartea, Fernando Moreno-Pino, Stefan Zohren
One of the key decisions in execution strategies is the choice between a passive (liquidity providing) or an aggressive (liquidity taking) order to execute a trade in a limit order book (LOB). Esse...
执行策略的关键决策之一是在限价订单簿(LOB)中执行交易时选择被动(提供流动性)订单还是主动(占用流动性)订单。在这种情况下...
{"title":"Deep attentive survival analysis in limit order books: estimating fill probabilities with convolutional-transformers","authors":"Álvaro Arroyo, Álvaro Cartea, Fernando Moreno-Pino, Stefan Zohren","doi":"10.1080/14697688.2023.2286351","DOIUrl":"https://doi.org/10.1080/14697688.2023.2286351","url":null,"abstract":"One of the key decisions in execution strategies is the choice between a passive (liquidity providing) or an aggressive (liquidity taking) order to execute a trade in a limit order book (LOB). Esse...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"22 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139373991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive online mean-variance portfolio selection with transaction costs 有交易成本的自适应在线均值-方差投资组合选择
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2023-12-19 DOI: 10.1080/14697688.2023.2287134
Sini Guo, Jia-Wen Gu, Wai-Ki Ching, Benmeng Lyu
Online portfolio selection is attracting increasing attention in both artificial intelligence and finance communities due to its efficiency and practicability in deriving optimal investment strateg...
在线投资组合选择因其在推导最佳投资策略方面的高效性和实用性而日益受到人工智能和金融界的关注。
{"title":"Adaptive online mean-variance portfolio selection with transaction costs","authors":"Sini Guo, Jia-Wen Gu, Wai-Ki Ching, Benmeng Lyu","doi":"10.1080/14697688.2023.2287134","DOIUrl":"https://doi.org/10.1080/14697688.2023.2287134","url":null,"abstract":"Online portfolio selection is attracting increasing attention in both artificial intelligence and finance communities due to its efficiency and practicability in deriving optimal investment strateg...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"33 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138821087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On parametric optimal execution and machine learning surrogates 关于参数优化执行和机器学习代用程序
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2023-12-19 DOI: 10.1080/14697688.2023.2282657
Tao Chen, Mike Ludkovski, Moritz Voß
We investigate optimal order execution problems in discrete time with instantaneous price impact and stochastic resilience. First, in the setting of linear transient price impact we derive a closed...
我们研究了具有瞬时价格影响和随机弹性的离散时间中的最优订单执行问题。首先,在线性瞬时价格影响的环境中,我们推导出一个封闭的...
{"title":"On parametric optimal execution and machine learning surrogates","authors":"Tao Chen, Mike Ludkovski, Moritz Voß","doi":"10.1080/14697688.2023.2282657","DOIUrl":"https://doi.org/10.1080/14697688.2023.2282657","url":null,"abstract":"We investigate optimal order execution problems in discrete time with instantaneous price impact and stochastic resilience. First, in the setting of linear transient price impact we derive a closed...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"87 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139028442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regime-switching affine term structures 时序切换仿射项结构
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2023-12-19 DOI: 10.1080/14697688.2023.2288871
Andreas Celary, Zehra Eksi-Altay, Paul Krühner
We consider an HJM model setting for Markov-chain modulated forward rates. The underlying Markov chain is assumed to induce regime switches on the forward curve dynamics. Our primary focus is on th...
我们考虑了马尔可夫链调制远期利率的 HJM 模型设置。假设基本马尔可夫链会引起远期曲线动态的制度转换。我们的主要重点是...
{"title":"Regime-switching affine term structures","authors":"Andreas Celary, Zehra Eksi-Altay, Paul Krühner","doi":"10.1080/14697688.2023.2288871","DOIUrl":"https://doi.org/10.1080/14697688.2023.2288871","url":null,"abstract":"We consider an HJM model setting for Markov-chain modulated forward rates. The underlying Markov chain is assumed to induce regime switches on the forward curve dynamics. Our primary focus is on th...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139028674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional quantization of rough volatility and applications to volatility derivatives 粗糙波动率的函数量化及其在波动率衍生品中的应用
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2023-12-03 DOI: 10.1080/14697688.2023.2273414
O. Bonesini, G. Callegaro, A. Jacquier
We develop a product functional quantization of rough volatility. Since the optimal quantizers can be computed offline, this new technique, built on the insightful works by [Luschgy, H. and Pagès, ...
提出了粗糙挥发性的产品函数量化方法。由于最优量化器可以离线计算,这种建立在Luschgy, H.和pag的富有洞察力的工作基础上的新技术……
{"title":"Functional quantization of rough volatility and applications to volatility derivatives","authors":"O. Bonesini, G. Callegaro, A. Jacquier","doi":"10.1080/14697688.2023.2273414","DOIUrl":"https://doi.org/10.1080/14697688.2023.2273414","url":null,"abstract":"We develop a product functional quantization of rough volatility. Since the optimal quantizers can be computed offline, this new technique, built on the insightful works by [Luschgy, H. and Pagès, ...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"23 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Politics of Financial Control: The Role of the House of Commons 金融控制的政治:下议院的角色
IF 1.3 4区 经济学 Q3 BUSINESS, FINANCE Pub Date : 2023-12-01 DOI: 10.1080/14697688.2023.2283200
Teguh Ahmad Asparill, Rossy Lambelanova, Andi Pitono
Published in Quantitative Finance (Ahead of Print, 2023)
发表于《定量金融》(2023年出版前)
{"title":"The Politics of Financial Control: The Role of the House of Commons","authors":"Teguh Ahmad Asparill, Rossy Lambelanova, Andi Pitono","doi":"10.1080/14697688.2023.2283200","DOIUrl":"https://doi.org/10.1080/14697688.2023.2283200","url":null,"abstract":"Published in Quantitative Finance (Ahead of Print, 2023)","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"163 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Quantitative Finance
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1