用于微胶囊的荧光三聚氰胺-甲醛/多胺涂层,使其能够在复合材料中跟踪。

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED Journal of microencapsulation Pub Date : 2022-09-01 Epub Date: 2022-10-28 DOI:10.1080/02652048.2022.2137593
Christian Neumann, Sophia Rosencrantz, Andreas Schmohl, Latnikova Alexandra
{"title":"用于微胶囊的荧光三聚氰胺-甲醛/多胺涂层,使其能够在复合材料中跟踪。","authors":"Christian Neumann,&nbsp;Sophia Rosencrantz,&nbsp;Andreas Schmohl,&nbsp;Latnikova Alexandra","doi":"10.1080/02652048.2022.2137593","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed the development of fluorescent melamine-formaldehyde (MF)/polyamine coatings for labelling of prefabricated microcapsules and their tracking in composites. The composition of the fluorescent MF coatings was studied by FTIR spectroscopy, thermogravimetric analysis, and elemental analysis. The characteristics of the coatings and its deposition on different surfaces were investigated using optical and fluorescence microscopy and fluorescence spectroscopy. MF prepolymers were polymerised with tri- and polyamines yielding in fluorescent coatings without addition of fluorescent dyes. Both, MF/poly(ethylene imine) and MF/poly(vinyl amine) (PVAm) coated glass beads showed maximum fluorescence at an excitation wavelength of <i>λ</i><sub>max</sub> = 360 nm with the emission maxima at <i>λ</i><sub>max</sub> = 490 nm and <i>λ</i><sub>max</sub> = 410 nm, correspondingly. The MF/PVAm polymer was coated on diuron-poly(methyl methacrylate) microcapsules and tracked in highly filled composites (water-based plaster/paint) to show its applicability. MF/polyamine coatings were identified as promising materials for the fluorescent labelling of prefabricated microcapsules.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"39 6","pages":"575-588"},"PeriodicalIF":3.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fluorescent melamine-formaldehyde/polyamine coatings for microcapsules enabling their tracking in composites.\",\"authors\":\"Christian Neumann,&nbsp;Sophia Rosencrantz,&nbsp;Andreas Schmohl,&nbsp;Latnikova Alexandra\",\"doi\":\"10.1080/02652048.2022.2137593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed the development of fluorescent melamine-formaldehyde (MF)/polyamine coatings for labelling of prefabricated microcapsules and their tracking in composites. The composition of the fluorescent MF coatings was studied by FTIR spectroscopy, thermogravimetric analysis, and elemental analysis. The characteristics of the coatings and its deposition on different surfaces were investigated using optical and fluorescence microscopy and fluorescence spectroscopy. MF prepolymers were polymerised with tri- and polyamines yielding in fluorescent coatings without addition of fluorescent dyes. Both, MF/poly(ethylene imine) and MF/poly(vinyl amine) (PVAm) coated glass beads showed maximum fluorescence at an excitation wavelength of <i>λ</i><sub>max</sub> = 360 nm with the emission maxima at <i>λ</i><sub>max</sub> = 490 nm and <i>λ</i><sub>max</sub> = 410 nm, correspondingly. The MF/PVAm polymer was coated on diuron-poly(methyl methacrylate) microcapsules and tracked in highly filled composites (water-based plaster/paint) to show its applicability. MF/polyamine coatings were identified as promising materials for the fluorescent labelling of prefabricated microcapsules.</p>\",\"PeriodicalId\":16391,\"journal\":{\"name\":\"Journal of microencapsulation\",\"volume\":\"39 6\",\"pages\":\"575-588\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microencapsulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02652048.2022.2137593\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2022.2137593","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本研究旨在开发用于预制微胶囊标记及其在复合材料中跟踪的荧光三聚氰胺-甲醛(MF)/多胺涂层。通过红外光谱、热重分析和元素分析研究了荧光MF涂层的组成。利用光学和荧光显微镜以及荧光光谱研究了涂层的特性及其在不同表面上的沉积。MF预聚物与三胺和多胺聚合,在不添加荧光染料的情况下产生荧光涂料。MF/聚乙烯亚胺和MF/聚乙烯胺(PVAm)涂层玻璃珠在λmax的激发波长下均显示出最大荧光 = 360 nm,发射最大值为λmax = 490 nm和λmax = 410 nm。将MF/PVAm聚合物涂覆在敌草隆-聚甲基丙烯酸甲酯微胶囊上,并在高度填充的复合材料(水性石膏/涂料)中进行跟踪,以显示其适用性。MF/聚胺涂层被认为是用于预制微胶囊荧光标记的有前途的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fluorescent melamine-formaldehyde/polyamine coatings for microcapsules enabling their tracking in composites.

This study aimed the development of fluorescent melamine-formaldehyde (MF)/polyamine coatings for labelling of prefabricated microcapsules and their tracking in composites. The composition of the fluorescent MF coatings was studied by FTIR spectroscopy, thermogravimetric analysis, and elemental analysis. The characteristics of the coatings and its deposition on different surfaces were investigated using optical and fluorescence microscopy and fluorescence spectroscopy. MF prepolymers were polymerised with tri- and polyamines yielding in fluorescent coatings without addition of fluorescent dyes. Both, MF/poly(ethylene imine) and MF/poly(vinyl amine) (PVAm) coated glass beads showed maximum fluorescence at an excitation wavelength of λmax = 360 nm with the emission maxima at λmax = 490 nm and λmax = 410 nm, correspondingly. The MF/PVAm polymer was coated on diuron-poly(methyl methacrylate) microcapsules and tracked in highly filled composites (water-based plaster/paint) to show its applicability. MF/polyamine coatings were identified as promising materials for the fluorescent labelling of prefabricated microcapsules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
期刊最新文献
Recent updates of carotenoid encapsulation by spray-drying technique. Physicochemical stability and controlled release of vitamin D3-loaded emulsions stabilised by whey protein isolate-basil seed gum conjugates. Spray-dried chitosan oligosaccharide microparticles with polyvinyl alcohol-based dispersions for improved gefitinib solubility. Development, QbD-based optimisation, in-vivo pharmacokinetics, and ex-vivo evaluation of Eudragit® RS 100 loaded flurbiprofen nanoparticles for oral drug delivery. Paliperidone-loaded nose to brain targeted NLCS: optimisation, evaluation, histopathology and pharmacokinetic estimation for schizophernia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1