{"title":"基于类器官的肠道再生实验手术的新阶段——类器官研究综述及最新进展。","authors":"Eiji Kobayashi","doi":"10.1556/1046.2022.40002","DOIUrl":null,"url":null,"abstract":"<p><p>Small intestinal transplantation has emerged as an essential treatment for intestinal failure, but its relatively high graft rejection rate and mortality rate when compared to those of other transplanted organs has led to difficulties in post-transplantation treatment management. The recently-developed technique of creating organoids from somatic stem cells has created a challenging opportunity to develop a treatment that involves the creation of a substitute small intestine using autologous cells instead of transplanting another individual's small intestines. The remaining partial large intestine is then used as a segmental graft, and autologous small intestinal organoid transplantation is conducted on its epithelium in order to create a pedunculated hybrid graft. This is a new surgical technique for interposing with the original ileocecal region. The hybrid large intestine acquires both the lymphatic vessels that are involved in nutrient absorption and the original peristaltic function of the large intestine.This lecture touches upon the history of the development of organoid medicine, after which an introduction is provided of the revolutionary surgical technique in which a functional small intestine is created by regenerating autologous cells.The content here was introduced in a special lecture (online) at the 29th Congress of the Experimental Surgical Session of the Hungarian Surgical Society (Host: Dr. Norbert Nemeth, 9/9/2022, Budapest).</p>","PeriodicalId":74097,"journal":{"name":"Magyar sebeszet","volume":"75 4","pages":"261-264"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new stage of experimental surgery for organoid based intestinal regeneration - A review of organoid research and recent advance.\",\"authors\":\"Eiji Kobayashi\",\"doi\":\"10.1556/1046.2022.40002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small intestinal transplantation has emerged as an essential treatment for intestinal failure, but its relatively high graft rejection rate and mortality rate when compared to those of other transplanted organs has led to difficulties in post-transplantation treatment management. The recently-developed technique of creating organoids from somatic stem cells has created a challenging opportunity to develop a treatment that involves the creation of a substitute small intestine using autologous cells instead of transplanting another individual's small intestines. The remaining partial large intestine is then used as a segmental graft, and autologous small intestinal organoid transplantation is conducted on its epithelium in order to create a pedunculated hybrid graft. This is a new surgical technique for interposing with the original ileocecal region. The hybrid large intestine acquires both the lymphatic vessels that are involved in nutrient absorption and the original peristaltic function of the large intestine.This lecture touches upon the history of the development of organoid medicine, after which an introduction is provided of the revolutionary surgical technique in which a functional small intestine is created by regenerating autologous cells.The content here was introduced in a special lecture (online) at the 29th Congress of the Experimental Surgical Session of the Hungarian Surgical Society (Host: Dr. Norbert Nemeth, 9/9/2022, Budapest).</p>\",\"PeriodicalId\":74097,\"journal\":{\"name\":\"Magyar sebeszet\",\"volume\":\"75 4\",\"pages\":\"261-264\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magyar sebeszet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/1046.2022.40002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magyar sebeszet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1046.2022.40002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new stage of experimental surgery for organoid based intestinal regeneration - A review of organoid research and recent advance.
Small intestinal transplantation has emerged as an essential treatment for intestinal failure, but its relatively high graft rejection rate and mortality rate when compared to those of other transplanted organs has led to difficulties in post-transplantation treatment management. The recently-developed technique of creating organoids from somatic stem cells has created a challenging opportunity to develop a treatment that involves the creation of a substitute small intestine using autologous cells instead of transplanting another individual's small intestines. The remaining partial large intestine is then used as a segmental graft, and autologous small intestinal organoid transplantation is conducted on its epithelium in order to create a pedunculated hybrid graft. This is a new surgical technique for interposing with the original ileocecal region. The hybrid large intestine acquires both the lymphatic vessels that are involved in nutrient absorption and the original peristaltic function of the large intestine.This lecture touches upon the history of the development of organoid medicine, after which an introduction is provided of the revolutionary surgical technique in which a functional small intestine is created by regenerating autologous cells.The content here was introduced in a special lecture (online) at the 29th Congress of the Experimental Surgical Session of the Hungarian Surgical Society (Host: Dr. Norbert Nemeth, 9/9/2022, Budapest).