Madeleine Geiger, Marcelo R. Sánchez-Villagra, Emma Sherratt
{"title":"家兔在驯化过程中颅骨形状的变化","authors":"Madeleine Geiger, Marcelo R. Sánchez-Villagra, Emma Sherratt","doi":"10.1002/jez.b.23171","DOIUrl":null,"url":null,"abstract":"<p>Domestication leads to phenotypic characteristics that have been described to be similar across species. However, this “domestication syndrome” has been subject to debate, related to a lack of evidence for certain characteristics in many species. Here we review diverse literature and provide new data on cranial shape changes due to domestication in the European rabbit (<i>Oryctolagus cuniculus</i>) as a preliminary case study, thus contributing novel evidence to the debate. We quantified cranial shape of 30 wild and domestic rabbits using micro-computed tomography scans and three-dimensional geometric morphometrics. The goal was to test (1) if the domesticates exhibit shorter and broader snouts, smaller teeth, and smaller braincases than their wild counterparts; (2) to what extent allometric scaling is responsible for cranial shape variation; (3) if there is evidence for more variation in the neural crest-derived parts of the cranium compared with those derived of the mesoderm, in accordance with the “neural crest hypothesis.” Our own data are consistent with older literature records, suggesting that although there is evidence for some cranial characteristics of the “domestication syndrome” in rabbits, facial length is not reduced. In accordance with the “neural crest hypothesis,” we found more shape variation in neural crest versus mesoderm-derived parts of the cranium. Within the domestic group, allometric scaling relationships of the snout, the braincase, and the teeth shed new light on ubiquitous patterns among related taxa. This study—albeit preliminary due to the limited sample size—adds to the growing evidence concerning nonuniform patterns associated with domestication.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804214/pdf/","citationCount":"4","resultStr":"{\"title\":\"Cranial shape variation in domestication: A pilot study on the case of rabbits\",\"authors\":\"Madeleine Geiger, Marcelo R. Sánchez-Villagra, Emma Sherratt\",\"doi\":\"10.1002/jez.b.23171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Domestication leads to phenotypic characteristics that have been described to be similar across species. However, this “domestication syndrome” has been subject to debate, related to a lack of evidence for certain characteristics in many species. Here we review diverse literature and provide new data on cranial shape changes due to domestication in the European rabbit (<i>Oryctolagus cuniculus</i>) as a preliminary case study, thus contributing novel evidence to the debate. We quantified cranial shape of 30 wild and domestic rabbits using micro-computed tomography scans and three-dimensional geometric morphometrics. The goal was to test (1) if the domesticates exhibit shorter and broader snouts, smaller teeth, and smaller braincases than their wild counterparts; (2) to what extent allometric scaling is responsible for cranial shape variation; (3) if there is evidence for more variation in the neural crest-derived parts of the cranium compared with those derived of the mesoderm, in accordance with the “neural crest hypothesis.” Our own data are consistent with older literature records, suggesting that although there is evidence for some cranial characteristics of the “domestication syndrome” in rabbits, facial length is not reduced. In accordance with the “neural crest hypothesis,” we found more shape variation in neural crest versus mesoderm-derived parts of the cranium. Within the domestic group, allometric scaling relationships of the snout, the braincase, and the teeth shed new light on ubiquitous patterns among related taxa. This study—albeit preliminary due to the limited sample size—adds to the growing evidence concerning nonuniform patterns associated with domestication.</p>\",\"PeriodicalId\":15682,\"journal\":{\"name\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804214/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23171\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23171","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Cranial shape variation in domestication: A pilot study on the case of rabbits
Domestication leads to phenotypic characteristics that have been described to be similar across species. However, this “domestication syndrome” has been subject to debate, related to a lack of evidence for certain characteristics in many species. Here we review diverse literature and provide new data on cranial shape changes due to domestication in the European rabbit (Oryctolagus cuniculus) as a preliminary case study, thus contributing novel evidence to the debate. We quantified cranial shape of 30 wild and domestic rabbits using micro-computed tomography scans and three-dimensional geometric morphometrics. The goal was to test (1) if the domesticates exhibit shorter and broader snouts, smaller teeth, and smaller braincases than their wild counterparts; (2) to what extent allometric scaling is responsible for cranial shape variation; (3) if there is evidence for more variation in the neural crest-derived parts of the cranium compared with those derived of the mesoderm, in accordance with the “neural crest hypothesis.” Our own data are consistent with older literature records, suggesting that although there is evidence for some cranial characteristics of the “domestication syndrome” in rabbits, facial length is not reduced. In accordance with the “neural crest hypothesis,” we found more shape variation in neural crest versus mesoderm-derived parts of the cranium. Within the domestic group, allometric scaling relationships of the snout, the braincase, and the teeth shed new light on ubiquitous patterns among related taxa. This study—albeit preliminary due to the limited sample size—adds to the growing evidence concerning nonuniform patterns associated with domestication.
期刊介绍:
Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms.
The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB.
We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.