{"title":"镰状细胞病的器官功能适应症和治疗后的潜在改善。","authors":"Monica L Hulbert, Allison A King, Shalini Shenoy","doi":"10.1182/hematology.2022000372","DOIUrl":null,"url":null,"abstract":"<p><p>Curative therapies for sickle cell disease include allogeneic hematopoietic stem cell transplantation (HSCT) and gene-modified autologous stem cell transplantation. HSCT has been used for 30 years with success measured by engraftment, symptom control, graft-vs-host disease (GVHD) risk, organ toxicity, and immune reconstitution. While human leukocyte antigen-matched sibling donor (MSD) transplants have excellent outcomes, alternate donor transplants (unrelated/haploidentical) are just beginning to overcome GVHD and engraftment hurdles to match MSD. Gene therapy, a newly developed treatment, is undergoing careful evaluation in many trials with varying approaches. The risk/benefit ratio to the patient in relation to outcomes, toxicities, and mortality risk drives eligibility for curative interventions. Consequently, eligibility criteria for MSD transplants can be less stringent, especially in the young. Posttransplant outcome analysis after the \"cure\" with respect to organ function recovery is essential. While established damage such as stroke is irreversible, transplant can help stabilize (pulmonary function), prevent further deterioration (stroke), improve (neurocognition), and protect unaffected organs. Tracking organ functions postintervention uniformly between clinical trials and for adequate duration is essential to answer safety and efficacy questions related to curative therapies. Age-appropriate application/outcome analyses of such therapies will be the ultimate goal in overcoming this disease.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"277-282"},"PeriodicalIF":2.9000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820741/pdf/hem.2022000372.pdf","citationCount":"1","resultStr":"{\"title\":\"Organ function indications and potential improvements following curative therapy for sickle cell disease.\",\"authors\":\"Monica L Hulbert, Allison A King, Shalini Shenoy\",\"doi\":\"10.1182/hematology.2022000372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Curative therapies for sickle cell disease include allogeneic hematopoietic stem cell transplantation (HSCT) and gene-modified autologous stem cell transplantation. HSCT has been used for 30 years with success measured by engraftment, symptom control, graft-vs-host disease (GVHD) risk, organ toxicity, and immune reconstitution. While human leukocyte antigen-matched sibling donor (MSD) transplants have excellent outcomes, alternate donor transplants (unrelated/haploidentical) are just beginning to overcome GVHD and engraftment hurdles to match MSD. Gene therapy, a newly developed treatment, is undergoing careful evaluation in many trials with varying approaches. The risk/benefit ratio to the patient in relation to outcomes, toxicities, and mortality risk drives eligibility for curative interventions. Consequently, eligibility criteria for MSD transplants can be less stringent, especially in the young. Posttransplant outcome analysis after the \\\"cure\\\" with respect to organ function recovery is essential. While established damage such as stroke is irreversible, transplant can help stabilize (pulmonary function), prevent further deterioration (stroke), improve (neurocognition), and protect unaffected organs. Tracking organ functions postintervention uniformly between clinical trials and for adequate duration is essential to answer safety and efficacy questions related to curative therapies. Age-appropriate application/outcome analyses of such therapies will be the ultimate goal in overcoming this disease.</p>\",\"PeriodicalId\":12973,\"journal\":{\"name\":\"Hematology. American Society of Hematology. Education Program\",\"volume\":\"2022 1\",\"pages\":\"277-282\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820741/pdf/hem.2022000372.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hematology. American Society of Hematology. Education Program\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1182/hematology.2022000372\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hematology. American Society of Hematology. Education Program","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1182/hematology.2022000372","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Organ function indications and potential improvements following curative therapy for sickle cell disease.
Curative therapies for sickle cell disease include allogeneic hematopoietic stem cell transplantation (HSCT) and gene-modified autologous stem cell transplantation. HSCT has been used for 30 years with success measured by engraftment, symptom control, graft-vs-host disease (GVHD) risk, organ toxicity, and immune reconstitution. While human leukocyte antigen-matched sibling donor (MSD) transplants have excellent outcomes, alternate donor transplants (unrelated/haploidentical) are just beginning to overcome GVHD and engraftment hurdles to match MSD. Gene therapy, a newly developed treatment, is undergoing careful evaluation in many trials with varying approaches. The risk/benefit ratio to the patient in relation to outcomes, toxicities, and mortality risk drives eligibility for curative interventions. Consequently, eligibility criteria for MSD transplants can be less stringent, especially in the young. Posttransplant outcome analysis after the "cure" with respect to organ function recovery is essential. While established damage such as stroke is irreversible, transplant can help stabilize (pulmonary function), prevent further deterioration (stroke), improve (neurocognition), and protect unaffected organs. Tracking organ functions postintervention uniformly between clinical trials and for adequate duration is essential to answer safety and efficacy questions related to curative therapies. Age-appropriate application/outcome analyses of such therapies will be the ultimate goal in overcoming this disease.