裂变酵母中己糖转运基因在时间寿命和葡萄糖摄取方面的特征。

IF 0.8 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of General and Applied Microbiology Pub Date : 2023-03-06 DOI:10.2323/jgam.2022.05.006
Teppei Maruyama, Kanako Hayashi, Kotaro Matsui, Yasukichi Maekawa, Takafumi Shimasaki, Hokuto Ohtsuka, Saitoh Shigeaki, Hirofumi Aiba
{"title":"裂变酵母中己糖转运基因在时间寿命和葡萄糖摄取方面的特征。","authors":"Teppei Maruyama,&nbsp;Kanako Hayashi,&nbsp;Kotaro Matsui,&nbsp;Yasukichi Maekawa,&nbsp;Takafumi Shimasaki,&nbsp;Hokuto Ohtsuka,&nbsp;Saitoh Shigeaki,&nbsp;Hirofumi Aiba","doi":"10.2323/jgam.2022.05.006","DOIUrl":null,"url":null,"abstract":"<p><p>Fission yeast, Schizosaccharomyces pombe, possesses eight hexose transporters, Ght1~8. In order to clarify the role of each hexose transporter on glucose uptake, a glucose uptake assay system was established and the actual glucose uptake activity of each hexose transporter-deletion mutant was measured. Under normal growth condition containing 2% glucose, ∆ght5 and ∆ght2 mutants showed large and small decrease in glucose uptake activity, respectively. On the other hand, the other deletion mutants did not show any decrease in glucose uptake activity indicating that, in the presence of Ght5 and Ght2, the other hexose transporters do not play a significant role in glucose uptake. To understand the relevance between glucose uptake and lifespan regulation, we measured the chronological lifespan of each hexose transporter deletion mutant, and found that only ∆ght5 mutant showed a significant lifespan extension. Based on these results we showed that Ght5 is mainly involved in the glucose uptake in Schizosaccharomyces pombe, and suggested that the ∆ght5 mutant has prolonged lifespan due to physiological changes similar to calorie restriction.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":"68 6","pages":"270-277"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of hexose transporter genes in the views of the chronological life span and glucose uptake in fission yeast.\",\"authors\":\"Teppei Maruyama,&nbsp;Kanako Hayashi,&nbsp;Kotaro Matsui,&nbsp;Yasukichi Maekawa,&nbsp;Takafumi Shimasaki,&nbsp;Hokuto Ohtsuka,&nbsp;Saitoh Shigeaki,&nbsp;Hirofumi Aiba\",\"doi\":\"10.2323/jgam.2022.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fission yeast, Schizosaccharomyces pombe, possesses eight hexose transporters, Ght1~8. In order to clarify the role of each hexose transporter on glucose uptake, a glucose uptake assay system was established and the actual glucose uptake activity of each hexose transporter-deletion mutant was measured. Under normal growth condition containing 2% glucose, ∆ght5 and ∆ght2 mutants showed large and small decrease in glucose uptake activity, respectively. On the other hand, the other deletion mutants did not show any decrease in glucose uptake activity indicating that, in the presence of Ght5 and Ght2, the other hexose transporters do not play a significant role in glucose uptake. To understand the relevance between glucose uptake and lifespan regulation, we measured the chronological lifespan of each hexose transporter deletion mutant, and found that only ∆ght5 mutant showed a significant lifespan extension. Based on these results we showed that Ght5 is mainly involved in the glucose uptake in Schizosaccharomyces pombe, and suggested that the ∆ght5 mutant has prolonged lifespan due to physiological changes similar to calorie restriction.</p>\",\"PeriodicalId\":15842,\"journal\":{\"name\":\"Journal of General and Applied Microbiology\",\"volume\":\"68 6\",\"pages\":\"270-277\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General and Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2323/jgam.2022.05.006\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General and Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2323/jgam.2022.05.006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

分裂酵母(Schizosaccharomyces pombe)具有8个己糖转运体Ght1~8。为了明确每种己糖转运体在葡萄糖摄取中的作用,我们建立了葡萄糖摄取测定系统,并测量了每种己糖转运体缺失突变体的实际葡萄糖摄取活性。在含2%葡萄糖的正常生长条件下,∆ght5和∆ght2突变体的葡萄糖摄取活性分别出现较大和较小的下降。另一方面,其他缺失突变体没有表现出葡萄糖摄取活性的下降,这表明,在Ght5和Ght2存在的情况下,其他己糖转运体在葡萄糖摄取中没有显著作用。为了了解葡萄糖摄取与寿命调节之间的相关性,我们测量了每个己糖转运体缺失突变体的按时间顺序的寿命,发现只有∆ght5突变体表现出显著的寿命延长。基于这些结果,我们发现Ght5主要参与了pombe Schizosaccharomyces的葡萄糖摄取,并提示∆Ght5突变体由于类似于热量限制的生理变化而延长了寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of hexose transporter genes in the views of the chronological life span and glucose uptake in fission yeast.

Fission yeast, Schizosaccharomyces pombe, possesses eight hexose transporters, Ght1~8. In order to clarify the role of each hexose transporter on glucose uptake, a glucose uptake assay system was established and the actual glucose uptake activity of each hexose transporter-deletion mutant was measured. Under normal growth condition containing 2% glucose, ∆ght5 and ∆ght2 mutants showed large and small decrease in glucose uptake activity, respectively. On the other hand, the other deletion mutants did not show any decrease in glucose uptake activity indicating that, in the presence of Ght5 and Ght2, the other hexose transporters do not play a significant role in glucose uptake. To understand the relevance between glucose uptake and lifespan regulation, we measured the chronological lifespan of each hexose transporter deletion mutant, and found that only ∆ght5 mutant showed a significant lifespan extension. Based on these results we showed that Ght5 is mainly involved in the glucose uptake in Schizosaccharomyces pombe, and suggested that the ∆ght5 mutant has prolonged lifespan due to physiological changes similar to calorie restriction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of General and Applied Microbiology
Journal of General and Applied Microbiology 生物-生物工程与应用微生物
CiteScore
2.40
自引率
0.00%
发文量
42
审稿时长
6-12 weeks
期刊介绍: JGAM is going to publish scientific reports containing novel and significant microbiological findings, which are mainly devoted to the following categories: Antibiotics and Secondary Metabolites; Biotechnology and Metabolic Engineering; Developmental Microbiology; Environmental Microbiology and Bioremediation; Enzymology; Eukaryotic Microbiology; Evolution and Phylogenetics; Genome Integrity and Plasticity; Microalgae and Photosynthesis; Microbiology for Food; Molecular Genetics; Physiology and Cell Surface; Synthetic and Systems Microbiology.
期刊最新文献
Marine bacteria have multiple polyamide 4-degrading enzymes. Structure of the SigF1-dependent pilA1 gene promoter and characterization of the light-activated response in the cyanobacterium Synechococcus elongatus PCC 7942. The chromosome level whole genome sequence and the seconary matabolism gene cluster prediction of Fusarium meridionale, the pathogen causing maize ear rot. Directed evolution of highly sensitive and stringent choline-induced gene expression controllers. Rational Design of a Yeast-derived 3',5'-bisphosphate Nucleotidase with Improved Substrate Specificity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1