热带亚洲和澳大拉西亚植物群的非对称迁移动力学

IF 4.6 1区 生物学 Q1 PLANT SCIENCES Plant Diversity Pub Date : 2023-01-01 DOI:10.1016/j.pld.2022.05.006
Li-Guo Zhang , Xiao-Qian Li , Wei-Tao Jin , Yu-Juan Liu , Yao Zhao , Jun Rong , Xiao-Guo Xiang
{"title":"热带亚洲和澳大拉西亚植物群的非对称迁移动力学","authors":"Li-Guo Zhang ,&nbsp;Xiao-Qian Li ,&nbsp;Wei-Tao Jin ,&nbsp;Yu-Juan Liu ,&nbsp;Yao Zhao ,&nbsp;Jun Rong ,&nbsp;Xiao-Guo Xiang","doi":"10.1016/j.pld.2022.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>The tropical Asian and Australasian floras have a close relationship, and is a vital distribution pattern of seed plants worldwide. As estimated, more than 81 families and 225 genera of seed plants distributed between tropical Asia and Australasia. However, the evolutionary dynamics of two floras were still vague. Here, a total of 29 plant lineages, represented the main clades of seed plants and different habits, were selected to investigate the biotic interchange between tropical Asia and Australasia by integrated dated phylogenies, biogeography, and ancestral state reconstructions. Our statistics indicated that 68 migrations have occurred between tropical Asia and Australasia since the middle Eocene except terminal migrations, and the migration events from tropical Asia to Australasia is more than 2 times of the reverse. Only 12 migrations occurred before 15 Ma, whereas the remaining 56 migrations occurred after 15 Ma. Maximal number of potential dispersal events (MDE) analysis also shows obvious asymmetry, with southward migration as the main feature, and indicates the climax of bi-directional migrations occurred after 15 Ma. We speculate that the formation of island chains after the Australian–Sundaland collision and climate changes have driven seed plant migrations since the middle Miocene. Furthermore, biotic dispersal and stable habitat may be crucial for floristic interchange between tropical Asia and Australasia.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"45 1","pages":"Pages 20-26"},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a2/ea/main.PMC9975475.pdf","citationCount":"1","resultStr":"{\"title\":\"Asymmetric migration dynamics of the tropical Asian and Australasian floras\",\"authors\":\"Li-Guo Zhang ,&nbsp;Xiao-Qian Li ,&nbsp;Wei-Tao Jin ,&nbsp;Yu-Juan Liu ,&nbsp;Yao Zhao ,&nbsp;Jun Rong ,&nbsp;Xiao-Guo Xiang\",\"doi\":\"10.1016/j.pld.2022.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The tropical Asian and Australasian floras have a close relationship, and is a vital distribution pattern of seed plants worldwide. As estimated, more than 81 families and 225 genera of seed plants distributed between tropical Asia and Australasia. However, the evolutionary dynamics of two floras were still vague. Here, a total of 29 plant lineages, represented the main clades of seed plants and different habits, were selected to investigate the biotic interchange between tropical Asia and Australasia by integrated dated phylogenies, biogeography, and ancestral state reconstructions. Our statistics indicated that 68 migrations have occurred between tropical Asia and Australasia since the middle Eocene except terminal migrations, and the migration events from tropical Asia to Australasia is more than 2 times of the reverse. Only 12 migrations occurred before 15 Ma, whereas the remaining 56 migrations occurred after 15 Ma. Maximal number of potential dispersal events (MDE) analysis also shows obvious asymmetry, with southward migration as the main feature, and indicates the climax of bi-directional migrations occurred after 15 Ma. We speculate that the formation of island chains after the Australian–Sundaland collision and climate changes have driven seed plant migrations since the middle Miocene. Furthermore, biotic dispersal and stable habitat may be crucial for floristic interchange between tropical Asia and Australasia.</p></div>\",\"PeriodicalId\":20224,\"journal\":{\"name\":\"Plant Diversity\",\"volume\":\"45 1\",\"pages\":\"Pages 20-26\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a2/ea/main.PMC9975475.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Diversity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468265922000592\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468265922000592","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

热带亚洲植物区系与澳大拉西亚植物区系关系密切,是世界范围内种子植物的重要分布模式。据估计,热带亚洲和澳大拉西亚之间分布着超过81科225属的种子植物。然而,两个植物区系的进化动力学仍然模糊不清。在这里,共选择了29个植物谱系,代表了种子植物的主要分支和不同的习性,通过综合年代系统发育、生物地理学和祖先状态重建来研究热带亚洲和澳大拉西亚之间的生物交流。我们的统计数据表明,自始新世中期以来,除末端迁徙外,热带亚洲和澳大拉西亚之间共发生了68次迁徙,从热带亚洲到澳大拉亚的迁徙事件是相反的2倍多。15 Ma前仅发生12次迁移,其余56次迁移发生在15 Ma后。潜在扩散事件的最大数量(MDE)分析也显示出明显的不对称性,以向南迁移为主要特征,表明双向迁移的高潮出现在15 Ma之后。我们推测,自中新世中期以来,澳大利亚-桑达兰碰撞后岛链的形成和气候变化推动了种子植物的迁移。此外,生物扩散和稳定的栖息地可能对热带亚洲和澳大拉西亚之间的植物区系交换至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymmetric migration dynamics of the tropical Asian and Australasian floras

The tropical Asian and Australasian floras have a close relationship, and is a vital distribution pattern of seed plants worldwide. As estimated, more than 81 families and 225 genera of seed plants distributed between tropical Asia and Australasia. However, the evolutionary dynamics of two floras were still vague. Here, a total of 29 plant lineages, represented the main clades of seed plants and different habits, were selected to investigate the biotic interchange between tropical Asia and Australasia by integrated dated phylogenies, biogeography, and ancestral state reconstructions. Our statistics indicated that 68 migrations have occurred between tropical Asia and Australasia since the middle Eocene except terminal migrations, and the migration events from tropical Asia to Australasia is more than 2 times of the reverse. Only 12 migrations occurred before 15 Ma, whereas the remaining 56 migrations occurred after 15 Ma. Maximal number of potential dispersal events (MDE) analysis also shows obvious asymmetry, with southward migration as the main feature, and indicates the climax of bi-directional migrations occurred after 15 Ma. We speculate that the formation of island chains after the Australian–Sundaland collision and climate changes have driven seed plant migrations since the middle Miocene. Furthermore, biotic dispersal and stable habitat may be crucial for floristic interchange between tropical Asia and Australasia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Diversity
Plant Diversity Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍: Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that advance our understanding of the past and current distribution of plants, contribute to the development of more phylogenetically accurate taxonomic classifications, present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists. While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance. Fields covered by the journal include: plant systematics and taxonomy- evolutionary developmental biology- reproductive biology- phylo- and biogeography- evolutionary ecology- population biology- conservation biology- palaeobotany- molecular evolution- comparative and evolutionary genomics- physiology- biochemistry
期刊最新文献
Population genetic insights into the conservation of common walnut (Juglans regia) in Central Asia. The mid-domain effect in flowering phenology. Molecular phylogeny and taxonomy of Phlomoides (Lamiaceae subfamily Lamioideae) in China: Insights from molecular and morphological data. Origin and evolution of a new tetraploid mangrove species in an intertidal zone. Extremely thin but very robust: Surprising cryptogam trait combinations at the end of the leaf economics spectrum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1