{"title":"研究逃亡者对COVID-19传播动态影响的确定性隔间模型","authors":"Josiah Mushanyu , Chidozie Williams Chukwu , Chinwendu Emilian Madubueze , Zviiteyi Chazuka , Chisara Peace Ogbogbo","doi":"10.1016/j.health.2023.100275","DOIUrl":null,"url":null,"abstract":"<div><p>The recent outbreak of the novel coronavirus (COVID-19) pandemic has devastated many parts of the globe. Non-pharmaceutical interventions are the widely available measures to combat and control the COVID-19 pandemic. There is great concern over the rampant unaccounted cases of individuals skipping the border during this critical period in time. We develop a deterministic compartmental model to investigate the impact of escapees (individuals who evade mandatory quarantine) on the transmission dynamics of COVID-19. A suitable Lyapunov function has shown that the disease-free equilibrium is globally asymptotically stable, provided <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo><</mo><mn>1</mn></mrow></math></span>. We performed a global sensitivity analysis using the Latin-hyper cube sampling method and partial rank correlation coefficients to determine the most influential model parameters on the short and long-term dynamics of the pandemic to minimize uncertainties associated with our variables and parameters. Results confirm a positive correlation between the number of escapees and the reported COVID-19 cases. It is shown that escapees are primarily responsible for the rapid increase in local transmissions. Also, the results from sensitivity analysis show that an increase in governmental role actions and a reduction in the illegal immigration rate will help to control and contain the disease spread.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"4 ","pages":"Article 100275"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442523001429/pdfft?md5=59ac50a508117ece27a07f4cf1a487a8&pid=1-s2.0-S2772442523001429-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A deterministic compartmental model for investigating the impact of escapees on the transmission dynamics of COVID-19\",\"authors\":\"Josiah Mushanyu , Chidozie Williams Chukwu , Chinwendu Emilian Madubueze , Zviiteyi Chazuka , Chisara Peace Ogbogbo\",\"doi\":\"10.1016/j.health.2023.100275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recent outbreak of the novel coronavirus (COVID-19) pandemic has devastated many parts of the globe. Non-pharmaceutical interventions are the widely available measures to combat and control the COVID-19 pandemic. There is great concern over the rampant unaccounted cases of individuals skipping the border during this critical period in time. We develop a deterministic compartmental model to investigate the impact of escapees (individuals who evade mandatory quarantine) on the transmission dynamics of COVID-19. A suitable Lyapunov function has shown that the disease-free equilibrium is globally asymptotically stable, provided <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo><</mo><mn>1</mn></mrow></math></span>. We performed a global sensitivity analysis using the Latin-hyper cube sampling method and partial rank correlation coefficients to determine the most influential model parameters on the short and long-term dynamics of the pandemic to minimize uncertainties associated with our variables and parameters. Results confirm a positive correlation between the number of escapees and the reported COVID-19 cases. It is shown that escapees are primarily responsible for the rapid increase in local transmissions. Also, the results from sensitivity analysis show that an increase in governmental role actions and a reduction in the illegal immigration rate will help to control and contain the disease spread.</p></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"4 \",\"pages\":\"Article 100275\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772442523001429/pdfft?md5=59ac50a508117ece27a07f4cf1a487a8&pid=1-s2.0-S2772442523001429-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442523001429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442523001429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A deterministic compartmental model for investigating the impact of escapees on the transmission dynamics of COVID-19
The recent outbreak of the novel coronavirus (COVID-19) pandemic has devastated many parts of the globe. Non-pharmaceutical interventions are the widely available measures to combat and control the COVID-19 pandemic. There is great concern over the rampant unaccounted cases of individuals skipping the border during this critical period in time. We develop a deterministic compartmental model to investigate the impact of escapees (individuals who evade mandatory quarantine) on the transmission dynamics of COVID-19. A suitable Lyapunov function has shown that the disease-free equilibrium is globally asymptotically stable, provided . We performed a global sensitivity analysis using the Latin-hyper cube sampling method and partial rank correlation coefficients to determine the most influential model parameters on the short and long-term dynamics of the pandemic to minimize uncertainties associated with our variables and parameters. Results confirm a positive correlation between the number of escapees and the reported COVID-19 cases. It is shown that escapees are primarily responsible for the rapid increase in local transmissions. Also, the results from sensitivity analysis show that an increase in governmental role actions and a reduction in the illegal immigration rate will help to control and contain the disease spread.