Raúl Gómez-Martínez, Carmen Orden-Cruz, Juan Gabriel Martínez-Navalón
{"title":"维基百科页面浏览量是投资者关注纳斯达克的指标","authors":"Raúl Gómez-Martínez, Carmen Orden-Cruz, Juan Gabriel Martínez-Navalón","doi":"10.1002/isaf.1508","DOIUrl":null,"url":null,"abstract":"<p>The attempt to measure investors’ mood to find an early indicator of financial markets has evolved and developed with the advancement of technology over the years. The first attempts were based on surveys, a long and expensive process. Nowadays, big data has made it possible to measure the investor’s mood accurately and almost entirely online. This paper analyzes the explanatory and predictive capacity of Wikipedia pageviews for the Nasdaq index. For this purpose, two econometric models have been developed. In both models, the explanatory variable is the number of Wikipedia visits, and the endogenous variable is Nasdaq index return. As an alternative to this approach, an algorithmic trading system has been developed. It uses Wikipedia visits as investment signals for long and short positions to check the predictability power of this indicator. It is determined that the volume of queries about Nasdaq companies is a statistically significant variable for expressing the evolution of this index. However, it has no predictive capacity. Keeping in mind the capacity of Wikipedia to exemplify Nasdaq trends, further studies should be conducted to determine how to make this indicator profitable.</p>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"29 1","pages":"41-49"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/isaf.1508","citationCount":"1","resultStr":"{\"title\":\"Wikipedia pageviews as investors’ attention indicator for Nasdaq\",\"authors\":\"Raúl Gómez-Martínez, Carmen Orden-Cruz, Juan Gabriel Martínez-Navalón\",\"doi\":\"10.1002/isaf.1508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The attempt to measure investors’ mood to find an early indicator of financial markets has evolved and developed with the advancement of technology over the years. The first attempts were based on surveys, a long and expensive process. Nowadays, big data has made it possible to measure the investor’s mood accurately and almost entirely online. This paper analyzes the explanatory and predictive capacity of Wikipedia pageviews for the Nasdaq index. For this purpose, two econometric models have been developed. In both models, the explanatory variable is the number of Wikipedia visits, and the endogenous variable is Nasdaq index return. As an alternative to this approach, an algorithmic trading system has been developed. It uses Wikipedia visits as investment signals for long and short positions to check the predictability power of this indicator. It is determined that the volume of queries about Nasdaq companies is a statistically significant variable for expressing the evolution of this index. However, it has no predictive capacity. Keeping in mind the capacity of Wikipedia to exemplify Nasdaq trends, further studies should be conducted to determine how to make this indicator profitable.</p>\",\"PeriodicalId\":53473,\"journal\":{\"name\":\"Intelligent Systems in Accounting, Finance and Management\",\"volume\":\"29 1\",\"pages\":\"41-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/isaf.1508\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems in Accounting, Finance and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
Wikipedia pageviews as investors’ attention indicator for Nasdaq
The attempt to measure investors’ mood to find an early indicator of financial markets has evolved and developed with the advancement of technology over the years. The first attempts were based on surveys, a long and expensive process. Nowadays, big data has made it possible to measure the investor’s mood accurately and almost entirely online. This paper analyzes the explanatory and predictive capacity of Wikipedia pageviews for the Nasdaq index. For this purpose, two econometric models have been developed. In both models, the explanatory variable is the number of Wikipedia visits, and the endogenous variable is Nasdaq index return. As an alternative to this approach, an algorithmic trading system has been developed. It uses Wikipedia visits as investment signals for long and short positions to check the predictability power of this indicator. It is determined that the volume of queries about Nasdaq companies is a statistically significant variable for expressing the evolution of this index. However, it has no predictive capacity. Keeping in mind the capacity of Wikipedia to exemplify Nasdaq trends, further studies should be conducted to determine how to make this indicator profitable.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.