{"title":"基于无线传感器网络的气体分散时间感知分布式顺序检测","authors":"Gianluca Tabella;Domenico Ciuonzo;Yasin Yilmaz;Xiaodong Wang;Pierluigi Salvo Rossi","doi":"10.1109/TSIPN.2023.3324586","DOIUrl":null,"url":null,"abstract":"This work addresses the problem of detecting gas dispersions through concentration sensors with wireless transmission capabilities organized as a distributed Wireless Sensor Network (WSN). The concentration sensors in the WSN perform local sequential detection (SD) and transmit their individual decisions to the Fusion Center (FC) according to a transmission rule designed to meet the low-energy requirements of a wireless setup. The FC receives the transmissions sent by the sensors and makes a more reliable global decision by employing a SD algorithm. Two variants of the SD algorithm named \n<italic>Continuous Sampling Algorithm</i>\n (CSA) and \n<italic>Decision-Triggered Sampling Algorithm</i>\n (DTSA), each with its own transmission rule, are presented and compared against a fully-batch algorithm named \n<italic>Batch Sampling Algorithm</i>\n (BSA). The CSA operates as a \n<italic>time-aware</i>\n detector by incorporating the time of each transmission in the detection rule. The proposed framework encompasses the gas dispersion model into the FC's decision rule and leverages real-time weather measurements. The case study involves an accidental dispersion of carbon dioxide (CO\n<sub>2</sub>\n). System performances are evaluated in terms of the receiver operating characteristic (ROC) curve as well as average decision delay and communication cost.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"9 ","pages":"721-735"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-Aware Distributed Sequential Detection of Gas Dispersion via Wireless Sensor Networks\",\"authors\":\"Gianluca Tabella;Domenico Ciuonzo;Yasin Yilmaz;Xiaodong Wang;Pierluigi Salvo Rossi\",\"doi\":\"10.1109/TSIPN.2023.3324586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work addresses the problem of detecting gas dispersions through concentration sensors with wireless transmission capabilities organized as a distributed Wireless Sensor Network (WSN). The concentration sensors in the WSN perform local sequential detection (SD) and transmit their individual decisions to the Fusion Center (FC) according to a transmission rule designed to meet the low-energy requirements of a wireless setup. The FC receives the transmissions sent by the sensors and makes a more reliable global decision by employing a SD algorithm. Two variants of the SD algorithm named \\n<italic>Continuous Sampling Algorithm</i>\\n (CSA) and \\n<italic>Decision-Triggered Sampling Algorithm</i>\\n (DTSA), each with its own transmission rule, are presented and compared against a fully-batch algorithm named \\n<italic>Batch Sampling Algorithm</i>\\n (BSA). The CSA operates as a \\n<italic>time-aware</i>\\n detector by incorporating the time of each transmission in the detection rule. The proposed framework encompasses the gas dispersion model into the FC's decision rule and leverages real-time weather measurements. The case study involves an accidental dispersion of carbon dioxide (CO\\n<sub>2</sub>\\n). System performances are evaluated in terms of the receiver operating characteristic (ROC) curve as well as average decision delay and communication cost.\",\"PeriodicalId\":56268,\"journal\":{\"name\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"volume\":\"9 \",\"pages\":\"721-735\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10285037/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10285037/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Time-Aware Distributed Sequential Detection of Gas Dispersion via Wireless Sensor Networks
This work addresses the problem of detecting gas dispersions through concentration sensors with wireless transmission capabilities organized as a distributed Wireless Sensor Network (WSN). The concentration sensors in the WSN perform local sequential detection (SD) and transmit their individual decisions to the Fusion Center (FC) according to a transmission rule designed to meet the low-energy requirements of a wireless setup. The FC receives the transmissions sent by the sensors and makes a more reliable global decision by employing a SD algorithm. Two variants of the SD algorithm named
Continuous Sampling Algorithm
(CSA) and
Decision-Triggered Sampling Algorithm
(DTSA), each with its own transmission rule, are presented and compared against a fully-batch algorithm named
Batch Sampling Algorithm
(BSA). The CSA operates as a
time-aware
detector by incorporating the time of each transmission in the detection rule. The proposed framework encompasses the gas dispersion model into the FC's decision rule and leverages real-time weather measurements. The case study involves an accidental dispersion of carbon dioxide (CO
2
). System performances are evaluated in terms of the receiver operating characteristic (ROC) curve as well as average decision delay and communication cost.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.