波斯语文献摘要的自动语言学方法

Hossein Kamyar, M. Kahani, Mohsen Kamyar, Asef Poormasoomi
{"title":"波斯语文献摘要的自动语言学方法","authors":"Hossein Kamyar, M. Kahani, Mohsen Kamyar, Asef Poormasoomi","doi":"10.1109/IALP.2011.52","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel technique for summarizing a text based on the linguistics properties of text elements and semantic chains among them. In most summarization approaches, the major consideration is the statistical properties of text elements such as term frequency. Here we use centering theory which helps us to recognize semantic chains in a text, for proposing a new automatic single document summarization approach. For processing a text by centering theory and extracting a coherent summery, a processing pipeline should be constructed. This pipeline consists of several components such as co-reference resolution, semantic role labeling and POS [Part of speech] tagging.","PeriodicalId":297167,"journal":{"name":"2011 International Conference on Asian Language Processing","volume":"7 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Automatic Linguistics Approach for Persian Document Summarization\",\"authors\":\"Hossein Kamyar, M. Kahani, Mohsen Kamyar, Asef Poormasoomi\",\"doi\":\"10.1109/IALP.2011.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a novel technique for summarizing a text based on the linguistics properties of text elements and semantic chains among them. In most summarization approaches, the major consideration is the statistical properties of text elements such as term frequency. Here we use centering theory which helps us to recognize semantic chains in a text, for proposing a new automatic single document summarization approach. For processing a text by centering theory and extracting a coherent summery, a processing pipeline should be constructed. This pipeline consists of several components such as co-reference resolution, semantic role labeling and POS [Part of speech] tagging.\",\"PeriodicalId\":297167,\"journal\":{\"name\":\"2011 International Conference on Asian Language Processing\",\"volume\":\"7 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2011.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2011.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于文本元素及其语义链的文本摘要技术。在大多数摘要方法中,主要考虑的是文本元素的统计属性,如词频率。在这里,我们利用中心理论来帮助我们识别文本中的语义链,提出了一种新的自动单文档摘要方法。为了对文本进行集中理论和提取连贯摘要的处理,需要构建一个处理流水线。该管道由共同引用解析、语义角色标注和词性标注等组件组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Automatic Linguistics Approach for Persian Document Summarization
In this paper we propose a novel technique for summarizing a text based on the linguistics properties of text elements and semantic chains among them. In most summarization approaches, the major consideration is the statistical properties of text elements such as term frequency. Here we use centering theory which helps us to recognize semantic chains in a text, for proposing a new automatic single document summarization approach. For processing a text by centering theory and extracting a coherent summery, a processing pipeline should be constructed. This pipeline consists of several components such as co-reference resolution, semantic role labeling and POS [Part of speech] tagging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automatic Linguistics Approach for Persian Document Summarization Research on the Uyghur Information Database for Information Processing Research on Multi-document Summarization Model Based on Dynamic Manifold-Ranking Mining Parallel Data from Comparable Corpora via Triangulation A Query Reformulation Model Using Markov Graphic Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1