基于Sn协方差的稳健二次判别分析

Sajana O. Kunjunni, S. Abraham
{"title":"基于Sn协方差的稳健二次判别分析","authors":"Sajana O. Kunjunni, S. Abraham","doi":"10.1080/03610918.2020.1868512","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a robust method for robust estimation of quadratic discriminant analysis. The mean and covariance matrix for estimating quadratic discriminant rule is computed using a robust estimation method called Sn method established from a robust covariance estimator The performance of the proposed method is evaluated using the results of simulated samples. This outlier detection method is compared with some well-known methods available in the current literature. The application of the proposed method in real-life data is also executed in this paper.","PeriodicalId":119237,"journal":{"name":"Commun. Stat. Simul. Comput.","volume":"116 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust quadratic discriminant analysis using Sn covariance\",\"authors\":\"Sajana O. Kunjunni, S. Abraham\",\"doi\":\"10.1080/03610918.2020.1868512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a robust method for robust estimation of quadratic discriminant analysis. The mean and covariance matrix for estimating quadratic discriminant rule is computed using a robust estimation method called Sn method established from a robust covariance estimator The performance of the proposed method is evaluated using the results of simulated samples. This outlier detection method is compared with some well-known methods available in the current literature. The application of the proposed method in real-life data is also executed in this paper.\",\"PeriodicalId\":119237,\"journal\":{\"name\":\"Commun. Stat. Simul. Comput.\",\"volume\":\"116 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commun. Stat. Simul. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03610918.2020.1868512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commun. Stat. Simul. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03610918.2020.1868512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust quadratic discriminant analysis using Sn covariance
Abstract This paper presents a robust method for robust estimation of quadratic discriminant analysis. The mean and covariance matrix for estimating quadratic discriminant rule is computed using a robust estimation method called Sn method established from a robust covariance estimator The performance of the proposed method is evaluated using the results of simulated samples. This outlier detection method is compared with some well-known methods available in the current literature. The application of the proposed method in real-life data is also executed in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MCMC4Extremes: an R package for Bayesian inference for extremes and its extensions A Description Method for Formalizing Domain-Specific Modelling Language Reliable Approximated Number System with Exact Bounds and Three-Valued Logic The Definition and Numerical Method of Final Value Problem and Arbitrary Value Problem Robust quadratic discriminant analysis using Sn covariance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1