基于长短期记忆网络的温度预测

Fred Y. Wu, Shaofei Lu, Lopez-Aeamburo Armando, Jingke She
{"title":"基于长短期记忆网络的温度预测","authors":"Fred Y. Wu, Shaofei Lu, Lopez-Aeamburo Armando, Jingke She","doi":"10.1109/CSCI49370.2019.00062","DOIUrl":null,"url":null,"abstract":"Objective: This paper has been prepared as an effort to reassess the research studies on the relevance of Longshort term memory (LSTM) in the correction and prediction of sensor data for temperature. Methods: This methods are a multiple input parameters model of LSTM and an input parameter model of LSTM, the first one corrects one of those parameter and the next one predict the remaining data of one parameter of sensor data after training history data. Findings: The training data reach 87,600 with 8 parameter, the error of first model reduce to 0.13% . The training data reach 11,682, the error between real data and predicted data is from 3.4% to 0.03% Application / Improvement: The methods will be used to correct the history data of sensors and determine which seed to plant and whether to irrigate. In future, we will integrate Markov chain with LSTM to improve the precision of LSTM and reduce the size of training data.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":" 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Temperature Prediction Based on Long Short Term Memory Networks\",\"authors\":\"Fred Y. Wu, Shaofei Lu, Lopez-Aeamburo Armando, Jingke She\",\"doi\":\"10.1109/CSCI49370.2019.00062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: This paper has been prepared as an effort to reassess the research studies on the relevance of Longshort term memory (LSTM) in the correction and prediction of sensor data for temperature. Methods: This methods are a multiple input parameters model of LSTM and an input parameter model of LSTM, the first one corrects one of those parameter and the next one predict the remaining data of one parameter of sensor data after training history data. Findings: The training data reach 87,600 with 8 parameter, the error of first model reduce to 0.13% . The training data reach 11,682, the error between real data and predicted data is from 3.4% to 0.03% Application / Improvement: The methods will be used to correct the history data of sensors and determine which seed to plant and whether to irrigate. In future, we will integrate Markov chain with LSTM to improve the precision of LSTM and reduce the size of training data.\",\"PeriodicalId\":103662,\"journal\":{\"name\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\" 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI49370.2019.00062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

目的:对长短期记忆(LSTM)在温度传感器数据校正与预测中的相关性进行研究。方法:该方法是LSTM的多输入参数模型和LSTM的输入参数模型,第一个模型对其中一个参数进行校正,第二个模型在训练历史数据后预测传感器数据中一个参数的剩余数据。结果:8个参数的训练数据达到87,600个,第一个模型的误差减小到0.13%。训练数据达到11682,实际数据与预测数据的误差在3.4% ~ 0.03%。应用/改进:该方法将用于校正传感器的历史数据,确定种植哪种种子,是否灌溉。未来,我们将把马尔可夫链与LSTM相结合,提高LSTM的精度,减少训练数据的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temperature Prediction Based on Long Short Term Memory Networks
Objective: This paper has been prepared as an effort to reassess the research studies on the relevance of Longshort term memory (LSTM) in the correction and prediction of sensor data for temperature. Methods: This methods are a multiple input parameters model of LSTM and an input parameter model of LSTM, the first one corrects one of those parameter and the next one predict the remaining data of one parameter of sensor data after training history data. Findings: The training data reach 87,600 with 8 parameter, the error of first model reduce to 0.13% . The training data reach 11,682, the error between real data and predicted data is from 3.4% to 0.03% Application / Improvement: The methods will be used to correct the history data of sensors and determine which seed to plant and whether to irrigate. In future, we will integrate Markov chain with LSTM to improve the precision of LSTM and reduce the size of training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Long Short Term Memory Networks Extending a Soft-Core RISC-V Processor to Accelerate CNN Inference Uncovering Los Angeles Tourists' Patterns Using Geospatial Analysis and Supervised Machine Learning with Random Forest Predictors A Framework for Leveraging Business Intelligence to Manage Transactional Data Flows between Private Healthcare Providers and Medical Aid Administrators Feasibility Study of a Consumer Multi-Sensory Wristband to Monitor Sleep Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1