基于在线新闻的登革热事件检测的深度学习

P. Khotimah, Andri Fachrur Rozie, Ekasari Nugraheni, Andria Arisal, W. Suwarningsih, A. Purwarianti
{"title":"基于在线新闻的登革热事件检测的深度学习","authors":"P. Khotimah, Andri Fachrur Rozie, Ekasari Nugraheni, Andria Arisal, W. Suwarningsih, A. Purwarianti","doi":"10.1109/ICRAMET51080.2020.9298630","DOIUrl":null,"url":null,"abstract":"Dengue fever currently has been a hyperendemic infectious disease in Indonesia. Early detection ability of the dengue fever events are essential for a timely and effective response to prevent outbreaks. This paper presents dengue fever event detection using online news. A previous study conducted an event detection task from sentences using word frequency burst to detect an ongoing event. However, news do not only report about the event (i.e., the event of dengue fever case) but also information regarding the disease. This paper focuses on detecting an event of dengue fever from online news. An assessment of different deep learning models is reported in this paper. Using k-fold cross validation, convolutional neural network (CNN) achieved the best performance (in average, test accuracy: 80.019%, precision: 78.561%, recall: 77.747%, and f1-score: 77.234%).","PeriodicalId":228482,"journal":{"name":"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","volume":"139 1‐2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep Learning for Dengue Fever Event Detection Using Online News\",\"authors\":\"P. Khotimah, Andri Fachrur Rozie, Ekasari Nugraheni, Andria Arisal, W. Suwarningsih, A. Purwarianti\",\"doi\":\"10.1109/ICRAMET51080.2020.9298630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dengue fever currently has been a hyperendemic infectious disease in Indonesia. Early detection ability of the dengue fever events are essential for a timely and effective response to prevent outbreaks. This paper presents dengue fever event detection using online news. A previous study conducted an event detection task from sentences using word frequency burst to detect an ongoing event. However, news do not only report about the event (i.e., the event of dengue fever case) but also information regarding the disease. This paper focuses on detecting an event of dengue fever from online news. An assessment of different deep learning models is reported in this paper. Using k-fold cross validation, convolutional neural network (CNN) achieved the best performance (in average, test accuracy: 80.019%, precision: 78.561%, recall: 77.747%, and f1-score: 77.234%).\",\"PeriodicalId\":228482,\"journal\":{\"name\":\"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)\",\"volume\":\"139 1‐2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAMET51080.2020.9298630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMET51080.2020.9298630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

登革热目前是印度尼西亚的一种高地方性传染病。早期发现登革热事件的能力对于及时和有效地应对以预防疫情至关重要。本文介绍了利用网络新闻进行登革热事件检测的方法。先前的一项研究利用词频爆发从句子中进行事件检测任务,以检测正在进行的事件。然而,新闻不仅报道事件(即登革热病例事件),而且还报道有关该疾病的信息。本文主要研究从网络新闻中发现一起登革热事件。本文对不同的深度学习模型进行了评估。通过k-fold交叉验证,卷积神经网络(CNN)的测试准确率达到80.019%,精密度达到78.561%,召回率达到77.747%,f1-score达到77.234%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning for Dengue Fever Event Detection Using Online News
Dengue fever currently has been a hyperendemic infectious disease in Indonesia. Early detection ability of the dengue fever events are essential for a timely and effective response to prevent outbreaks. This paper presents dengue fever event detection using online news. A previous study conducted an event detection task from sentences using word frequency burst to detect an ongoing event. However, news do not only report about the event (i.e., the event of dengue fever case) but also information regarding the disease. This paper focuses on detecting an event of dengue fever from online news. An assessment of different deep learning models is reported in this paper. Using k-fold cross validation, convolutional neural network (CNN) achieved the best performance (in average, test accuracy: 80.019%, precision: 78.561%, recall: 77.747%, and f1-score: 77.234%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning for Dengue Fever Event Detection Using Online News Screen Printed Electrochemical Sensor for Ascorbic Acid Detection Based on Nafion/Ionic Liquids/Graphene Composite on Carbon Electrodes Implementation Array-Slotted Miliwires in Artificial Dielectric Material on Waveguide Filters Te10 Mode Path Loss Model of the Maritime Wireless Communication in the Seas of Indonesia Modeling of Low-Resolution Face Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1