可解释人工智能在音乐中的应用——以Nick Bryan-Kinns教授的“XAI+Music”研究为视角

Meixia Li
{"title":"可解释人工智能在音乐中的应用——以Nick Bryan-Kinns教授的“XAI+Music”研究为视角","authors":"Meixia Li","doi":"10.1109/ACAIT56212.2022.10137983","DOIUrl":null,"url":null,"abstract":"This paper mainly uses the comparative analysis method and the case analysis method to explain the explainable artificial intelligence (XAI) in music. The use of XAI in music is real-time interactive, and the more explainable and transparent, the more accurate it is. Interpretability can occur in or after modeling, and deep learning provides theoretical support for XAI. Professor Nick Bryan-Kinns' team made a breakthrough through experimental research on “XAI+Music” with the difficulties currently being explained by artificial intelligence, XAI technology has been directly applied to the creative AI model, for “XAI+Music” development and innovation provide references and ideas.","PeriodicalId":398228,"journal":{"name":"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Use of Explainable Artificial Intelligence in Music—Take Professor Nick Bryan-Kinns’ “XAI+Music” Research as a Perspective\",\"authors\":\"Meixia Li\",\"doi\":\"10.1109/ACAIT56212.2022.10137983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper mainly uses the comparative analysis method and the case analysis method to explain the explainable artificial intelligence (XAI) in music. The use of XAI in music is real-time interactive, and the more explainable and transparent, the more accurate it is. Interpretability can occur in or after modeling, and deep learning provides theoretical support for XAI. Professor Nick Bryan-Kinns' team made a breakthrough through experimental research on “XAI+Music” with the difficulties currently being explained by artificial intelligence, XAI technology has been directly applied to the creative AI model, for “XAI+Music” development and innovation provide references and ideas.\",\"PeriodicalId\":398228,\"journal\":{\"name\":\"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACAIT56212.2022.10137983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACAIT56212.2022.10137983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要运用比较分析法和案例分析法对音乐中的可解释性人工智能(XAI)进行分析。在音乐中使用XAI是实时交互的,越具有可解释性和透明度,就越准确。可解释性可以发生在建模过程中或之后,深度学习为XAI提供了理论支持。Nick Bryan-Kinns教授团队通过对“XAI+Music”的实验研究取得突破性进展,将目前人工智能解释的难点,直接应用到创造性的AI模型中,为“XAI+Music”的发展和创新提供参考和思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Use of Explainable Artificial Intelligence in Music—Take Professor Nick Bryan-Kinns’ “XAI+Music” Research as a Perspective
This paper mainly uses the comparative analysis method and the case analysis method to explain the explainable artificial intelligence (XAI) in music. The use of XAI in music is real-time interactive, and the more explainable and transparent, the more accurate it is. Interpretability can occur in or after modeling, and deep learning provides theoretical support for XAI. Professor Nick Bryan-Kinns' team made a breakthrough through experimental research on “XAI+Music” with the difficulties currently being explained by artificial intelligence, XAI technology has been directly applied to the creative AI model, for “XAI+Music” development and innovation provide references and ideas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transformer with Global and Local Interaction for Pedestrian Trajectory Prediction The Use of Explainable Artificial Intelligence in Music—Take Professor Nick Bryan-Kinns’ “XAI+Music” Research as a Perspective Playing Fight the Landlord with Tree Search and Hidden Information Evaluation Evaluation Method of Innovative Economic Benefits of Enterprise Human Capital Based on Deep Learning An Attribute Contribution-Based K-Nearest Neighbor Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1