合成照片协调与完整的背景线索

Yazhou Xing, Yu Li, Xintao Wang, Ye Zhu, Qifeng Chen
{"title":"合成照片协调与完整的背景线索","authors":"Yazhou Xing, Yu Li, Xintao Wang, Ye Zhu, Qifeng Chen","doi":"10.1145/3503161.3548031","DOIUrl":null,"url":null,"abstract":"Compositing portrait photographs or videos to novel backgrounds is an important application in computational photography. Seamless blending along boundaries and globally harmonic colors are two desired properties of the photo-realistic composition of foregrounds and new backgrounds. Existing works are dedicated to either foreground alpha matte generation or after-blending harmonization, leading to sub-optimal background replacement when putting foregrounds and backgrounds together. In this work, we unify the two objectives in a single framework to obtain realistic portrait image composites. Specifically, we investigate the usage of a target background and find that a complete background plays a vital role in both seamlessly blending and harmonization. We develop a network to learn the composition process given an imperfect alpha matte with appearance features extracted from the complete background to adjust color distribution. Our dedicated usage of a complete background enables realistic portrait image composition and also temporally stable results on videos. Extensive quantitative and qualitative experiments on both synthetic and real-world data demonstrate that our method achieves state-of-the-art performance.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Composite Photograph Harmonization with Complete Background Cues\",\"authors\":\"Yazhou Xing, Yu Li, Xintao Wang, Ye Zhu, Qifeng Chen\",\"doi\":\"10.1145/3503161.3548031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compositing portrait photographs or videos to novel backgrounds is an important application in computational photography. Seamless blending along boundaries and globally harmonic colors are two desired properties of the photo-realistic composition of foregrounds and new backgrounds. Existing works are dedicated to either foreground alpha matte generation or after-blending harmonization, leading to sub-optimal background replacement when putting foregrounds and backgrounds together. In this work, we unify the two objectives in a single framework to obtain realistic portrait image composites. Specifically, we investigate the usage of a target background and find that a complete background plays a vital role in both seamlessly blending and harmonization. We develop a network to learn the composition process given an imperfect alpha matte with appearance features extracted from the complete background to adjust color distribution. Our dedicated usage of a complete background enables realistic portrait image composition and also temporally stable results on videos. Extensive quantitative and qualitative experiments on both synthetic and real-world data demonstrate that our method achieves state-of-the-art performance.\",\"PeriodicalId\":412792,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3503161.3548031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3548031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在新的背景下合成人像照片或视频是计算摄影的一个重要应用。沿着边界的无缝混合和全局和谐的颜色是前景和新背景的照片真实感组成的两个期望属性。现有的作品致力于前景阿尔法哑光生成或后混合协调,导致将前景和背景放在一起时的次优背景替换。在这项工作中,我们将这两个目标统一在一个框架中,以获得逼真的肖像图像合成。具体来说,我们研究了目标背景的使用,发现完整的背景在无缝混合和协调中起着至关重要的作用。我们开发了一个网络来学习合成过程,给定一个不完美的阿尔法哑光,从完整的背景中提取外观特征来调整颜色分布。我们专门使用完整的背景,使逼真的肖像图像组成和视频上暂时稳定的结果。在合成数据和真实世界数据上进行的大量定量和定性实验表明,我们的方法达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Composite Photograph Harmonization with Complete Background Cues
Compositing portrait photographs or videos to novel backgrounds is an important application in computational photography. Seamless blending along boundaries and globally harmonic colors are two desired properties of the photo-realistic composition of foregrounds and new backgrounds. Existing works are dedicated to either foreground alpha matte generation or after-blending harmonization, leading to sub-optimal background replacement when putting foregrounds and backgrounds together. In this work, we unify the two objectives in a single framework to obtain realistic portrait image composites. Specifically, we investigate the usage of a target background and find that a complete background plays a vital role in both seamlessly blending and harmonization. We develop a network to learn the composition process given an imperfect alpha matte with appearance features extracted from the complete background to adjust color distribution. Our dedicated usage of a complete background enables realistic portrait image composition and also temporally stable results on videos. Extensive quantitative and qualitative experiments on both synthetic and real-world data demonstrate that our method achieves state-of-the-art performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Anti-Bottleneck Multi-Modal Graph Learning Network for Personalized Micro-video Recommendation Composite Photograph Harmonization with Complete Background Cues Domain-Specific Conditional Jigsaw Adaptation for Enhancing transferability and Discriminability Enabling Effective Low-Light Perception using Ubiquitous Low-Cost Visible-Light Cameras Restoration of Analog Videos Using Swin-UNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1