{"title":"VANETs中有效的自适应速率证书分发","authors":"Sebastian Bittl, Berke Aydinli, Karsten Roscher","doi":"10.1109/ISWCS.2015.7454366","DOIUrl":null,"url":null,"abstract":"Car-to-X communication systems, often called vehicular ad-hoc networks (VANETs), are in the process of entering the mass market in upcoming years. Thereby, security is a core point of concern due to the intended use for safety critical driver assistance systems. However, currently suggested security mechanisms introduce significant overhead into Car-to-X systems in terms of channel load and delay. Especially, the usage of on the fly distributed pseudonym certificates leads to a trade off between channel load and authentication delay, which may lead to significant packet loss. Thus, this work studies a novel concept for pseudonym certificate distribution in VANETs using rate-adaptive certificate distribution based on monitoring a vehicle's environment. Thereby, the cyclic certificate emission frequency is adapted on the fly based on cooperative awareness metrics for discrete parts of the vehicle's surrounding. The obtained mechanism is evaluated in a highway as well as an urban simulation scenario to show its suitability for a broad range of traffic conditions. Thereby, we find that it is able to significantly outperform the currently standardized approach for pseudonym certificate distribution in VANETs based on ETSI ITS standards. Thus, it should be regarded for further development of future VANETs.","PeriodicalId":383105,"journal":{"name":"2015 International Symposium on Wireless Communication Systems (ISWCS)","volume":"78 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient rate-adaptive certificate distribution in VANETs\",\"authors\":\"Sebastian Bittl, Berke Aydinli, Karsten Roscher\",\"doi\":\"10.1109/ISWCS.2015.7454366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Car-to-X communication systems, often called vehicular ad-hoc networks (VANETs), are in the process of entering the mass market in upcoming years. Thereby, security is a core point of concern due to the intended use for safety critical driver assistance systems. However, currently suggested security mechanisms introduce significant overhead into Car-to-X systems in terms of channel load and delay. Especially, the usage of on the fly distributed pseudonym certificates leads to a trade off between channel load and authentication delay, which may lead to significant packet loss. Thus, this work studies a novel concept for pseudonym certificate distribution in VANETs using rate-adaptive certificate distribution based on monitoring a vehicle's environment. Thereby, the cyclic certificate emission frequency is adapted on the fly based on cooperative awareness metrics for discrete parts of the vehicle's surrounding. The obtained mechanism is evaluated in a highway as well as an urban simulation scenario to show its suitability for a broad range of traffic conditions. Thereby, we find that it is able to significantly outperform the currently standardized approach for pseudonym certificate distribution in VANETs based on ETSI ITS standards. Thus, it should be regarded for further development of future VANETs.\",\"PeriodicalId\":383105,\"journal\":{\"name\":\"2015 International Symposium on Wireless Communication Systems (ISWCS)\",\"volume\":\"78 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Wireless Communication Systems (ISWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS.2015.7454366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2015.7454366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient rate-adaptive certificate distribution in VANETs
Car-to-X communication systems, often called vehicular ad-hoc networks (VANETs), are in the process of entering the mass market in upcoming years. Thereby, security is a core point of concern due to the intended use for safety critical driver assistance systems. However, currently suggested security mechanisms introduce significant overhead into Car-to-X systems in terms of channel load and delay. Especially, the usage of on the fly distributed pseudonym certificates leads to a trade off between channel load and authentication delay, which may lead to significant packet loss. Thus, this work studies a novel concept for pseudonym certificate distribution in VANETs using rate-adaptive certificate distribution based on monitoring a vehicle's environment. Thereby, the cyclic certificate emission frequency is adapted on the fly based on cooperative awareness metrics for discrete parts of the vehicle's surrounding. The obtained mechanism is evaluated in a highway as well as an urban simulation scenario to show its suitability for a broad range of traffic conditions. Thereby, we find that it is able to significantly outperform the currently standardized approach for pseudonym certificate distribution in VANETs based on ETSI ITS standards. Thus, it should be regarded for further development of future VANETs.