Alex Ryker, E. Matson, Sangho Kim, Seokjun Lee, Insu Jang
{"title":"实现一个基于harms的软件系统,用于集体机器人应用","authors":"Alex Ryker, E. Matson, Sangho Kim, Seokjun Lee, Insu Jang","doi":"10.1109/ICARA.2015.7081184","DOIUrl":null,"url":null,"abstract":"As robotic technology advances, robots become increasingly ubiquitous in the lives of humans. To facilitate this ubiquity, systems must be created that allow robots to interact easily with human beings. These systems must provide for communication between an arbitrary number of agents; for example, a home automation system with half a dozen environment sensors or a city-wide fire prevention system with hundreds of firefighting robots. In addition, these systems must support agents of varying complexity levels which could range from simple temperature sensors to database systems to autonomous robots. In this paper, we present the results of an experimental implementation of a HARMS-based system, the model for which has been proposed by Lewis et al [1].","PeriodicalId":176657,"journal":{"name":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","volume":"25 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Implementing a HARMS-based software system for use in collective robotics applications\",\"authors\":\"Alex Ryker, E. Matson, Sangho Kim, Seokjun Lee, Insu Jang\",\"doi\":\"10.1109/ICARA.2015.7081184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As robotic technology advances, robots become increasingly ubiquitous in the lives of humans. To facilitate this ubiquity, systems must be created that allow robots to interact easily with human beings. These systems must provide for communication between an arbitrary number of agents; for example, a home automation system with half a dozen environment sensors or a city-wide fire prevention system with hundreds of firefighting robots. In addition, these systems must support agents of varying complexity levels which could range from simple temperature sensors to database systems to autonomous robots. In this paper, we present the results of an experimental implementation of a HARMS-based system, the model for which has been proposed by Lewis et al [1].\",\"PeriodicalId\":176657,\"journal\":{\"name\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"25 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA.2015.7081184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2015.7081184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementing a HARMS-based software system for use in collective robotics applications
As robotic technology advances, robots become increasingly ubiquitous in the lives of humans. To facilitate this ubiquity, systems must be created that allow robots to interact easily with human beings. These systems must provide for communication between an arbitrary number of agents; for example, a home automation system with half a dozen environment sensors or a city-wide fire prevention system with hundreds of firefighting robots. In addition, these systems must support agents of varying complexity levels which could range from simple temperature sensors to database systems to autonomous robots. In this paper, we present the results of an experimental implementation of a HARMS-based system, the model for which has been proposed by Lewis et al [1].