碳电极上基于钠离子/离子液体/石墨烯复合材料的丝网印刷抗坏血酸检测电化学传感器

R. V. Manurung, Mahadir Marakka, Arifin Pide, E. D. Kurniawan, I. Hermida
{"title":"碳电极上基于钠离子/离子液体/石墨烯复合材料的丝网印刷抗坏血酸检测电化学传感器","authors":"R. V. Manurung, Mahadir Marakka, Arifin Pide, E. D. Kurniawan, I. Hermida","doi":"10.1109/ICRAMET51080.2020.9298606","DOIUrl":null,"url":null,"abstract":"The material modification of thick film sensor electrodes is being developed to enhance the performance of sensing capabilities such as stability, sensitivity, and limit detection. The utilization of graphene, ionic liquid, and Nafion has become a key factor to obtain a good material as modifiers in electrochemical sensors. This disposable modified electrode exhibits excellent current enhancement, fast electron transfer kinetics, and chemical stability properties. In this research, a screen-printed electrochemical sensor was fabricated by modifying the carbon working electrode with a combination of Nafion, ionic liquid, and graphene to determine ascorbic acid. The prototype ascorbic acid (AA) sensors show peak oxidation at a potential 0.3 V vs reference Ag|AgCl. Analytical characteristics of the prototype sensors were investigated with a linear calibration curves of AA concentrations over the range from 0.25 to 2 mM (R2 ~ 0.9912). The sensor has sensitivity around 15.95 nA M−1 cm−2 and the limit of detection was 164 μM. The cyclic voltammogram result indicate that the modified working electrode can increase the redox peak current higher than the bare working electrode. Thus, the modified electrode of thick film sensors could provide a promising platform for the sensor of ascorbic acid detection.","PeriodicalId":228482,"journal":{"name":"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","volume":"112 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screen Printed Electrochemical Sensor for Ascorbic Acid Detection Based on Nafion/Ionic Liquids/Graphene Composite on Carbon Electrodes\",\"authors\":\"R. V. Manurung, Mahadir Marakka, Arifin Pide, E. D. Kurniawan, I. Hermida\",\"doi\":\"10.1109/ICRAMET51080.2020.9298606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The material modification of thick film sensor electrodes is being developed to enhance the performance of sensing capabilities such as stability, sensitivity, and limit detection. The utilization of graphene, ionic liquid, and Nafion has become a key factor to obtain a good material as modifiers in electrochemical sensors. This disposable modified electrode exhibits excellent current enhancement, fast electron transfer kinetics, and chemical stability properties. In this research, a screen-printed electrochemical sensor was fabricated by modifying the carbon working electrode with a combination of Nafion, ionic liquid, and graphene to determine ascorbic acid. The prototype ascorbic acid (AA) sensors show peak oxidation at a potential 0.3 V vs reference Ag|AgCl. Analytical characteristics of the prototype sensors were investigated with a linear calibration curves of AA concentrations over the range from 0.25 to 2 mM (R2 ~ 0.9912). The sensor has sensitivity around 15.95 nA M−1 cm−2 and the limit of detection was 164 μM. The cyclic voltammogram result indicate that the modified working electrode can increase the redox peak current higher than the bare working electrode. Thus, the modified electrode of thick film sensors could provide a promising platform for the sensor of ascorbic acid detection.\",\"PeriodicalId\":228482,\"journal\":{\"name\":\"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)\",\"volume\":\"112 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAMET51080.2020.9298606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMET51080.2020.9298606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高传感器的稳定性、灵敏度和极限检测性能,厚膜传感器电极的材料改性正在得到发展。石墨烯、离子液体和Nafion的利用已成为获得电化学传感器改性材料的关键因素。这种一次性修饰电极具有优异的电流增强、快速的电子转移动力学和化学稳定性。在这项研究中,通过用Nafion、离子液体和石墨烯的组合修饰碳工作电极,制作了一种丝网印刷的电化学传感器,以测定抗坏血酸。原型抗坏血酸(AA)传感器在0.3 V vs参考Ag / AgCl电位下显示峰值氧化。通过在0.25 ~ 2 mM范围内(R2 ~ 0.9912)的AA浓度线性校准曲线考察了原型传感器的分析特性。该传感器的灵敏度约为15.95 nA M−1 cm−2,检测限为164 μM。循环伏安图结果表明,修饰后的工作电极比裸工作电极能提高氧化还原峰值电流。因此,厚膜传感器的修饰电极为抗坏血酸传感器的检测提供了一个很有前景的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Screen Printed Electrochemical Sensor for Ascorbic Acid Detection Based on Nafion/Ionic Liquids/Graphene Composite on Carbon Electrodes
The material modification of thick film sensor electrodes is being developed to enhance the performance of sensing capabilities such as stability, sensitivity, and limit detection. The utilization of graphene, ionic liquid, and Nafion has become a key factor to obtain a good material as modifiers in electrochemical sensors. This disposable modified electrode exhibits excellent current enhancement, fast electron transfer kinetics, and chemical stability properties. In this research, a screen-printed electrochemical sensor was fabricated by modifying the carbon working electrode with a combination of Nafion, ionic liquid, and graphene to determine ascorbic acid. The prototype ascorbic acid (AA) sensors show peak oxidation at a potential 0.3 V vs reference Ag|AgCl. Analytical characteristics of the prototype sensors were investigated with a linear calibration curves of AA concentrations over the range from 0.25 to 2 mM (R2 ~ 0.9912). The sensor has sensitivity around 15.95 nA M−1 cm−2 and the limit of detection was 164 μM. The cyclic voltammogram result indicate that the modified working electrode can increase the redox peak current higher than the bare working electrode. Thus, the modified electrode of thick film sensors could provide a promising platform for the sensor of ascorbic acid detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning for Dengue Fever Event Detection Using Online News Screen Printed Electrochemical Sensor for Ascorbic Acid Detection Based on Nafion/Ionic Liquids/Graphene Composite on Carbon Electrodes Implementation Array-Slotted Miliwires in Artificial Dielectric Material on Waveguide Filters Te10 Mode Path Loss Model of the Maritime Wireless Communication in the Seas of Indonesia Modeling of Low-Resolution Face Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1