基于多头注意和深度度量学习的网络流量分类

Zhuo-Hang Lv, Bin Lu, Xue Li, Zan Qi
{"title":"基于多头注意和深度度量学习的网络流量分类","authors":"Zhuo-Hang Lv, Bin Lu, Xue Li, Zan Qi","doi":"10.1117/12.2682521","DOIUrl":null,"url":null,"abstract":"Network traffic classification plays an important role in network resource management and security. The application of encryption techniques and the rapid increase in the size of network traffic have placed higher demands on traffic classification. In this paper, we design multi-headed attention (MHA) and deep metric learning (DML) in our model for network traffic classification. In addition, MHA-DML also extracts more subtle and highly differentiated features through the improved triplet measurement loss. Experimental results demonstrate that the model achieves the best classification on all three publicly available web traffic datasets. The MHA-DML guarantees detection accuracy even when facing a classification task with many categories.","PeriodicalId":440430,"journal":{"name":"International Conference on Electronic Technology and Information Science","volume":"399 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network traffic classification based on multi-head attention and deep metric learning\",\"authors\":\"Zhuo-Hang Lv, Bin Lu, Xue Li, Zan Qi\",\"doi\":\"10.1117/12.2682521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network traffic classification plays an important role in network resource management and security. The application of encryption techniques and the rapid increase in the size of network traffic have placed higher demands on traffic classification. In this paper, we design multi-headed attention (MHA) and deep metric learning (DML) in our model for network traffic classification. In addition, MHA-DML also extracts more subtle and highly differentiated features through the improved triplet measurement loss. Experimental results demonstrate that the model achieves the best classification on all three publicly available web traffic datasets. The MHA-DML guarantees detection accuracy even when facing a classification task with many categories.\",\"PeriodicalId\":440430,\"journal\":{\"name\":\"International Conference on Electronic Technology and Information Science\",\"volume\":\"399 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electronic Technology and Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2682521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electronic Technology and Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2682521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络流分类在网络资源管理和网络安全中起着重要的作用。加密技术的应用和网络流量的快速增长对流量分类提出了更高的要求。在本文中,我们在网络流量分类模型中设计了多头注意(MHA)和深度度量学习(DML)。此外,MHA-DML还通过改进的三联体测量损失提取出更加细微和高度差异化的特征。实验结果表明,该模型在所有三个公开的网络流量数据集上都取得了最好的分类效果。即使面对具有许多类别的分类任务,MHA-DML也能保证检测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network traffic classification based on multi-head attention and deep metric learning
Network traffic classification plays an important role in network resource management and security. The application of encryption techniques and the rapid increase in the size of network traffic have placed higher demands on traffic classification. In this paper, we design multi-headed attention (MHA) and deep metric learning (DML) in our model for network traffic classification. In addition, MHA-DML also extracts more subtle and highly differentiated features through the improved triplet measurement loss. Experimental results demonstrate that the model achieves the best classification on all three publicly available web traffic datasets. The MHA-DML guarantees detection accuracy even when facing a classification task with many categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network traffic classification based on multi-head attention and deep metric learning A study of regional precipitation data fusion model based on BP-LSTM in Qinghai province Design and application of an intelligent monitoring and early warning system for bioremediation of coking contaminated sites Research on improved adaptive spectrum access mechanism for millimetre wave Unloading optimization of networked vehicles based on improved genetic and particle swarm optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1