{"title":"NEX+:基于神经正则化的新型多平面图像视图合成","authors":"Wenpeng Xing, Jie Chen","doi":"10.1109/icassp43922.2022.9746938","DOIUrl":null,"url":null,"abstract":"We propose Nex+, a neural Multi-Plane Image (MPI) representation with alpha denoising for the task of novel view synthesis (NVS). Overfitting to training data is a common challenge for all learning-based models. We propose a novel solution for resolving such issue in the context of NVS with signal denoising-motivated operations over the alpha coefficients of the MPI, without any additional requirements for supervision. Nex+ contains a novel 5D Alpha Neural Regulariser (ANR), which favors low-frequency components in the angular domain, i.e., the alpha coefficients’ signal sub-space indicating various viewing directions. ANR’s angular low-frequency property derives from its small number of angular encoding levels and output basis. The regularised alpha in Nex+ can model the scene geometry more accurately than Nex, and outperforms other state-of-the-art methods on public datasets for the task of NVS.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"87 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"NEX+: Novel View Synthesis with Neural Regularisation Over Multi-Plane Images\",\"authors\":\"Wenpeng Xing, Jie Chen\",\"doi\":\"10.1109/icassp43922.2022.9746938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose Nex+, a neural Multi-Plane Image (MPI) representation with alpha denoising for the task of novel view synthesis (NVS). Overfitting to training data is a common challenge for all learning-based models. We propose a novel solution for resolving such issue in the context of NVS with signal denoising-motivated operations over the alpha coefficients of the MPI, without any additional requirements for supervision. Nex+ contains a novel 5D Alpha Neural Regulariser (ANR), which favors low-frequency components in the angular domain, i.e., the alpha coefficients’ signal sub-space indicating various viewing directions. ANR’s angular low-frequency property derives from its small number of angular encoding levels and output basis. The regularised alpha in Nex+ can model the scene geometry more accurately than Nex, and outperforms other state-of-the-art methods on public datasets for the task of NVS.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"87 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9746938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9746938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NEX+: Novel View Synthesis with Neural Regularisation Over Multi-Plane Images
We propose Nex+, a neural Multi-Plane Image (MPI) representation with alpha denoising for the task of novel view synthesis (NVS). Overfitting to training data is a common challenge for all learning-based models. We propose a novel solution for resolving such issue in the context of NVS with signal denoising-motivated operations over the alpha coefficients of the MPI, without any additional requirements for supervision. Nex+ contains a novel 5D Alpha Neural Regulariser (ANR), which favors low-frequency components in the angular domain, i.e., the alpha coefficients’ signal sub-space indicating various viewing directions. ANR’s angular low-frequency property derives from its small number of angular encoding levels and output basis. The regularised alpha in Nex+ can model the scene geometry more accurately than Nex, and outperforms other state-of-the-art methods on public datasets for the task of NVS.