多级蒸发空冷的热效率研究

Alaa R. Al-Badri, Zahraa Mohsin Farhan
{"title":"多级蒸发空冷的热效率研究","authors":"Alaa R. Al-Badri, Zahraa Mohsin Farhan","doi":"10.31185/ejuow.vol8.iss2.163","DOIUrl":null,"url":null,"abstract":"The air conditioning system performance is significantly affected by temperature rise which causes continuous increase in electricity consumption and pollution problems to environment. Evaporative cooling systems are characterized by their low energy consumption so that they represent successful potential alternatives to traditional vapor compression air conditioning systems. This study investigates the performance of multi-stages evaporative cooling systems experimentally and theoretically. The experimental set-up is mainly composed of two parts: indirect unit to decrease the air temperature and direct unit to moisturize the air. The system is installed and equipped with temperatures, humidity, and air velocity sensors. The experimental tests were run continuously to monitor the system performance at various weather conditions between  to  in June and July months. A mathematical model for the system components was developed and implemented in the Engineering Equation Solver (EES) program to simulate the performance of multi-stages evaporative cooling systems. The results showed that the heat flux  increases with the increase in the Reynolds number Re of inlet air, velocity fraction  extracted air for sensible cooling, air temperature at the product-in , air velocity at the product-in , and the adiabatic efficiency . But, it is decreasing with increasing the spacing between the heat exchanger plates  and the relative humidity at the product-in . Optimum performance was obtained with very small space between plates which was bout 5mm. Good agreement have been shown between experimental and predicted data, where the  results. Uncertainty of experimental data was within the range 4.14 to 6.15.","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"233 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Thermal Effectiveness of Multi-Stages Evaporative Air Cooling\",\"authors\":\"Alaa R. Al-Badri, Zahraa Mohsin Farhan\",\"doi\":\"10.31185/ejuow.vol8.iss2.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The air conditioning system performance is significantly affected by temperature rise which causes continuous increase in electricity consumption and pollution problems to environment. Evaporative cooling systems are characterized by their low energy consumption so that they represent successful potential alternatives to traditional vapor compression air conditioning systems. This study investigates the performance of multi-stages evaporative cooling systems experimentally and theoretically. The experimental set-up is mainly composed of two parts: indirect unit to decrease the air temperature and direct unit to moisturize the air. The system is installed and equipped with temperatures, humidity, and air velocity sensors. The experimental tests were run continuously to monitor the system performance at various weather conditions between  to  in June and July months. A mathematical model for the system components was developed and implemented in the Engineering Equation Solver (EES) program to simulate the performance of multi-stages evaporative cooling systems. The results showed that the heat flux  increases with the increase in the Reynolds number Re of inlet air, velocity fraction  extracted air for sensible cooling, air temperature at the product-in , air velocity at the product-in , and the adiabatic efficiency . But, it is decreasing with increasing the spacing between the heat exchanger plates  and the relative humidity at the product-in . Optimum performance was obtained with very small space between plates which was bout 5mm. Good agreement have been shown between experimental and predicted data, where the  results. Uncertainty of experimental data was within the range 4.14 to 6.15.\",\"PeriodicalId\":184256,\"journal\":{\"name\":\"Wasit Journal of Engineering Sciences\",\"volume\":\"233 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wasit Journal of Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31185/ejuow.vol8.iss2.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/ejuow.vol8.iss2.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

温度的升高对空调系统的性能影响很大,造成电力消耗的持续增加和对环境的污染问题。蒸发冷却系统的特点是其低能耗,因此它们代表了传统蒸汽压缩空调系统的成功潜在替代品。本文对多级蒸发冷却系统的性能进行了实验和理论研究。实验装置主要由降低空气温度的间接装置和湿润空气的直接装置两部分组成。该系统安装并配备了温度、湿度和空气速度传感器。实验测试在六月至七月期间连续进行,以监测系统在不同天气条件下的性能。建立了系统部件的数学模型,并在工程方程求解程序(EES)中实现,以模拟多级蒸发冷却系统的性能。结果表明:热流密度随进气雷诺数Re、显冷抽气速度分数、进气温度、进气速度和绝热效率的增大而增大;但随着换热板间距的增大和产品入口相对湿度的增大,传热系数逐渐减小。当板间距很小(约5mm)时,获得最佳性能。实验结果与预测结果吻合较好。实验数据的不确定度在4.14 ~ 6.15之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Study on Thermal Effectiveness of Multi-Stages Evaporative Air Cooling
The air conditioning system performance is significantly affected by temperature rise which causes continuous increase in electricity consumption and pollution problems to environment. Evaporative cooling systems are characterized by their low energy consumption so that they represent successful potential alternatives to traditional vapor compression air conditioning systems. This study investigates the performance of multi-stages evaporative cooling systems experimentally and theoretically. The experimental set-up is mainly composed of two parts: indirect unit to decrease the air temperature and direct unit to moisturize the air. The system is installed and equipped with temperatures, humidity, and air velocity sensors. The experimental tests were run continuously to monitor the system performance at various weather conditions between  to  in June and July months. A mathematical model for the system components was developed and implemented in the Engineering Equation Solver (EES) program to simulate the performance of multi-stages evaporative cooling systems. The results showed that the heat flux  increases with the increase in the Reynolds number Re of inlet air, velocity fraction  extracted air for sensible cooling, air temperature at the product-in , air velocity at the product-in , and the adiabatic efficiency . But, it is decreasing with increasing the spacing between the heat exchanger plates  and the relative humidity at the product-in . Optimum performance was obtained with very small space between plates which was bout 5mm. Good agreement have been shown between experimental and predicted data, where the  results. Uncertainty of experimental data was within the range 4.14 to 6.15.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Dye Removal and Water Treatment Feasibility Assessment for Iraq's Industrial Sector: A Case Study on Terasil Blue Dye Treatment Using Inverse Fluidized Bed and Adsorption A Deep Learning Approach to Evaluating SISO-OFDM Channel Equalization Numerical Investigation of the Impact of Subcooling Inlet on Water Flow Boiling Heat Transfer Through a Microchannel Effect of Metal Foam’s Volume on the Performance of a Double Pipe heat exchanger Flow field and heat transfer characteristics in dimple pipe with different shape of dimples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1