基于视觉的小行星飞掠轨道估计和作动器参数不确定性快速目标跟踪方法

Koya Hashizume, Kikuko Miyata, S. Hara
{"title":"基于视觉的小行星飞掠轨道估计和作动器参数不确定性快速目标跟踪方法","authors":"Koya Hashizume, Kikuko Miyata, S. Hara","doi":"10.1109/ICM46511.2021.9385662","DOIUrl":null,"url":null,"abstract":"Flyby imaging has attracted attention as a method for small body exploration and the requirement for an accurate target tracking system becomes higher for the mission quality. A relative trajectory that is either designed or estimated offline contains uncertainties, and they cause errors in the targeting profile generated for imaging missions. Online relative trajectory parameter estimation is required to obtain high-quality imaging, and visual-based tracking systems are popular for estimating the relative trajectory. In addition to the uncertainties in the measured or estimated relative parameters of trajectories, the high relative velocity between the spacecraft and the asteroid, as well as the actuator driving characteristics have a negative impact on asteroid tracking. To overcome the problems, this paper proposes a control system with two degrees of freedom, which includes a vision-based feedback controller and feedforward controller. The feedforward controller contains two compensators: the first utilizes a real-time vision-based relative trajectory estimator and predicts the future relative trajectory from the results of the estimation, and the other compensates for the actuator characteristics. The applicability of the proposed control system is discussed by using a case study based on numerical simulation. The results show the effectiveness of the proposed concept.","PeriodicalId":373423,"journal":{"name":"2021 IEEE International Conference on Mechatronics (ICM)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vision-Based Rapid Target Tracking Method for Trajectories Estimation and Actuator Parameter Uncertainties for Asteroid Flyby Problem\",\"authors\":\"Koya Hashizume, Kikuko Miyata, S. Hara\",\"doi\":\"10.1109/ICM46511.2021.9385662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flyby imaging has attracted attention as a method for small body exploration and the requirement for an accurate target tracking system becomes higher for the mission quality. A relative trajectory that is either designed or estimated offline contains uncertainties, and they cause errors in the targeting profile generated for imaging missions. Online relative trajectory parameter estimation is required to obtain high-quality imaging, and visual-based tracking systems are popular for estimating the relative trajectory. In addition to the uncertainties in the measured or estimated relative parameters of trajectories, the high relative velocity between the spacecraft and the asteroid, as well as the actuator driving characteristics have a negative impact on asteroid tracking. To overcome the problems, this paper proposes a control system with two degrees of freedom, which includes a vision-based feedback controller and feedforward controller. The feedforward controller contains two compensators: the first utilizes a real-time vision-based relative trajectory estimator and predicts the future relative trajectory from the results of the estimation, and the other compensates for the actuator characteristics. The applicability of the proposed control system is discussed by using a case study based on numerical simulation. The results show the effectiveness of the proposed concept.\",\"PeriodicalId\":373423,\"journal\":{\"name\":\"2021 IEEE International Conference on Mechatronics (ICM)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Mechatronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM46511.2021.9385662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM46511.2021.9385662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

飞掠成像作为小体探测的一种方法,越来越受到人们的关注,对精确的目标跟踪系统的要求也越来越高。离线设计或估计的相对轨迹包含不确定性,它们会导致成像任务生成的目标轮廓出现误差。为了获得高质量的成像,需要在线估计相对轨迹参数,基于视觉的跟踪系统是估计相对轨迹的常用方法。除了测量或估计的轨道相对参数存在不确定性外,航天器与小行星之间的高相对速度以及作动器的驱动特性对小行星跟踪产生了不利影响。为了克服这些问题,本文提出了一种包括基于视觉的反馈控制器和前馈控制器的二自由度控制系统。前馈控制器包含两个补偿器:第一个补偿器利用基于实时视觉的相对轨迹估计器并根据估计结果预测未来的相对轨迹,另一个补偿器对执行器的特性进行补偿。通过数值仿真的实例分析,讨论了该控制系统的适用性。结果表明了所提概念的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vision-Based Rapid Target Tracking Method for Trajectories Estimation and Actuator Parameter Uncertainties for Asteroid Flyby Problem
Flyby imaging has attracted attention as a method for small body exploration and the requirement for an accurate target tracking system becomes higher for the mission quality. A relative trajectory that is either designed or estimated offline contains uncertainties, and they cause errors in the targeting profile generated for imaging missions. Online relative trajectory parameter estimation is required to obtain high-quality imaging, and visual-based tracking systems are popular for estimating the relative trajectory. In addition to the uncertainties in the measured or estimated relative parameters of trajectories, the high relative velocity between the spacecraft and the asteroid, as well as the actuator driving characteristics have a negative impact on asteroid tracking. To overcome the problems, this paper proposes a control system with two degrees of freedom, which includes a vision-based feedback controller and feedforward controller. The feedforward controller contains two compensators: the first utilizes a real-time vision-based relative trajectory estimator and predicts the future relative trajectory from the results of the estimation, and the other compensates for the actuator characteristics. The applicability of the proposed control system is discussed by using a case study based on numerical simulation. The results show the effectiveness of the proposed concept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vision-Based Rapid Target Tracking Method for Trajectories Estimation and Actuator Parameter Uncertainties for Asteroid Flyby Problem Hybrid identification with time-series data and frequency response data for accurate estimation of linear characteristics Study on how to remove the rope traction device on the overhead distribution lines Adaptive Robust Motion Control of Series Elastic Actuator with Unmatched Uncertainties Modeling and Control of Stable Limit Cycle Walking on Floating Island
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1