利用NASA-POWER数据和支持向量机估算实际蒸散量

A. Faramiñán, M. F. Degano, Facundo Carmona, Paula Olivera Rodriguez
{"title":"利用NASA-POWER数据和支持向量机估算实际蒸散量","authors":"A. Faramiñán, M. F. Degano, Facundo Carmona, Paula Olivera Rodriguez","doi":"10.1109/RPIC53795.2021.9648425","DOIUrl":null,"url":null,"abstract":"An important issue for agricultural planning is to estimate evapotranspiration accurately due to its fundamental role in the sustainable use of water resources. In this sense, it is essential to have reliable and precise evapotranspiration measurements to improve models or products, mainly related to predicting droughts. The main objective of the present study is to evaluate the Support Vector Machine Regression’s (SVR) potential to estimate the actual evapotranspiration (ETa) through a NASA-Power dataset in the Pampean Region of Argentina. The results obtained were compared with ETa values (water balance), based on information from 12 agro-meteorological stations (1983 – 2012). After training and validating the SVR algorithm, we observed statistical mean errors of 0.39 ± 0.07 mm/d, 0.54 ± 0.09 mm/d, and 0.67 ± 0.07 for the MAE, RMSE, and R2, respectively. The results show the feasibility of applying machine learning algorithms for obtaining ETa values in agricultural plains without agro-meteorological data.","PeriodicalId":299649,"journal":{"name":"2021 XIX Workshop on Information Processing and Control (RPIC)","volume":"207 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimation of actual evapotranspiration using NASA-POWER data and Support Vector Machine\",\"authors\":\"A. Faramiñán, M. F. Degano, Facundo Carmona, Paula Olivera Rodriguez\",\"doi\":\"10.1109/RPIC53795.2021.9648425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important issue for agricultural planning is to estimate evapotranspiration accurately due to its fundamental role in the sustainable use of water resources. In this sense, it is essential to have reliable and precise evapotranspiration measurements to improve models or products, mainly related to predicting droughts. The main objective of the present study is to evaluate the Support Vector Machine Regression’s (SVR) potential to estimate the actual evapotranspiration (ETa) through a NASA-Power dataset in the Pampean Region of Argentina. The results obtained were compared with ETa values (water balance), based on information from 12 agro-meteorological stations (1983 – 2012). After training and validating the SVR algorithm, we observed statistical mean errors of 0.39 ± 0.07 mm/d, 0.54 ± 0.09 mm/d, and 0.67 ± 0.07 for the MAE, RMSE, and R2, respectively. The results show the feasibility of applying machine learning algorithms for obtaining ETa values in agricultural plains without agro-meteorological data.\",\"PeriodicalId\":299649,\"journal\":{\"name\":\"2021 XIX Workshop on Information Processing and Control (RPIC)\",\"volume\":\"207 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 XIX Workshop on Information Processing and Control (RPIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RPIC53795.2021.9648425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XIX Workshop on Information Processing and Control (RPIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RPIC53795.2021.9648425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于蒸散发在水资源可持续利用中的基础性作用,准确估算蒸散发是农业规划的一个重要问题。从这个意义上说,必须有可靠和精确的蒸散量,以改进主要与预测干旱有关的模式或产品。本研究的主要目的是通过NASA-Power数据集评估支持向量机回归(SVR)在阿根廷潘潘地区估计实际蒸散发(ETa)的潜力。利用12个农业气象站1983 - 2012年的资料,将所得结果与ETa(水平衡)值进行了比较。经过SVR算法的训练和验证,我们观察到MAE、RMSE和R2的统计平均误差分别为0.39±0.07 mm/d、0.54±0.09 mm/d和0.67±0.07。结果表明,在没有农业气象数据的农业平原,应用机器学习算法获取ETa值是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of actual evapotranspiration using NASA-POWER data and Support Vector Machine
An important issue for agricultural planning is to estimate evapotranspiration accurately due to its fundamental role in the sustainable use of water resources. In this sense, it is essential to have reliable and precise evapotranspiration measurements to improve models or products, mainly related to predicting droughts. The main objective of the present study is to evaluate the Support Vector Machine Regression’s (SVR) potential to estimate the actual evapotranspiration (ETa) through a NASA-Power dataset in the Pampean Region of Argentina. The results obtained were compared with ETa values (water balance), based on information from 12 agro-meteorological stations (1983 – 2012). After training and validating the SVR algorithm, we observed statistical mean errors of 0.39 ± 0.07 mm/d, 0.54 ± 0.09 mm/d, and 0.67 ± 0.07 for the MAE, RMSE, and R2, respectively. The results show the feasibility of applying machine learning algorithms for obtaining ETa values in agricultural plains without agro-meteorological data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimation of actual evapotranspiration using NASA-POWER data and Support Vector Machine Control of COVID-19 Outbreak for Preventing Collapse of Healthcare Capacity Parametric study of limiting cell design variables in a lithium battery pack Current-sensors fault tolerant control system for electric drives: experimental validation Seismic Moment Tensor Inversion in Anisotropic Media using Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1