E. Tokluoglu, I. Kaganovich, J. Carlsson, K. Hara, A. Powis
{"title":"离子或电子束在背景等离子体中传播的自电场和磁场双流不稳定性引起的放大","authors":"E. Tokluoglu, I. Kaganovich, J. Carlsson, K. Hara, A. Powis","doi":"10.1109/PLASMA.2017.8496200","DOIUrl":null,"url":null,"abstract":"Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve high degrees of charge and current neutralization and therefore can enable nearly ballistic propagation and focusing of charged particle beams. Correspondingly, use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in electric propulsion, inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to development of the two-stream instability between the beam ions and the plasma electrons [1, 2]. The electric and magnetic self-fields enhanced by the two-stream instability can lead to defocusing of the ion beam and fast scattering of an electron beam. Using particle-in-cell (PIC) simulations, we study the scaling of the instability-driven selfelectromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.","PeriodicalId":145705,"journal":{"name":"2017 IEEE International Conference on Plasma Science (ICOPS)","volume":"22 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amplification Due to the Two-Stream Instability of Self-Electric and Magnetic Fields of an Ion or Electron Beam Propagating in Background Plasma\",\"authors\":\"E. Tokluoglu, I. Kaganovich, J. Carlsson, K. Hara, A. Powis\",\"doi\":\"10.1109/PLASMA.2017.8496200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve high degrees of charge and current neutralization and therefore can enable nearly ballistic propagation and focusing of charged particle beams. Correspondingly, use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in electric propulsion, inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to development of the two-stream instability between the beam ions and the plasma electrons [1, 2]. The electric and magnetic self-fields enhanced by the two-stream instability can lead to defocusing of the ion beam and fast scattering of an electron beam. Using particle-in-cell (PIC) simulations, we study the scaling of the instability-driven selfelectromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.\",\"PeriodicalId\":145705,\"journal\":{\"name\":\"2017 IEEE International Conference on Plasma Science (ICOPS)\",\"volume\":\"22 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Plasma Science (ICOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLASMA.2017.8496200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2017.8496200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Amplification Due to the Two-Stream Instability of Self-Electric and Magnetic Fields of an Ion or Electron Beam Propagating in Background Plasma
Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve high degrees of charge and current neutralization and therefore can enable nearly ballistic propagation and focusing of charged particle beams. Correspondingly, use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in electric propulsion, inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to development of the two-stream instability between the beam ions and the plasma electrons [1, 2]. The electric and magnetic self-fields enhanced by the two-stream instability can lead to defocusing of the ion beam and fast scattering of an electron beam. Using particle-in-cell (PIC) simulations, we study the scaling of the instability-driven selfelectromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.