基于粒子群算法的119总线径向配电网损耗最小化

V. Rafi, Sharief Nadendla, V. Nayak, K.Venkata Naga Sai Reddy, G.UmeshSai Kumar, A. Maniteja
{"title":"基于粒子群算法的119总线径向配电网损耗最小化","authors":"V. Rafi, Sharief Nadendla, V. Nayak, K.Venkata Naga Sai Reddy, G.UmeshSai Kumar, A. Maniteja","doi":"10.1109/ICOEI56765.2023.10125873","DOIUrl":null,"url":null,"abstract":"In this research work.the formulation and reorganization of RDN is detailed using loop matrix. The analytical method of determining optimal reorganization consumes more computation time. The computation time increases with number of buses inthe system. So, an optimization algorithm is needed for finding the optimal reorganization of the radial distribution system. The major objective of the optimal reorganization is the minimizing the losses of the network. The optimization algorithms which are used in this article are Genetic Algorithm, Particle Swarm Optimization. In this article, the metaheuristic method is used for optimal reorganization. The organic optimization technique like PSOalgorithm is used for reorganization. The reorganisation issue is explored and examined in the presence and absence of the optimisation approach in a conventional large-scale 119 node network in different circumstances. The acquired findings are then compared.","PeriodicalId":168942,"journal":{"name":"2023 7th International Conference on Trends in Electronics and Informatics (ICOEI)","volume":"49 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimization of Losses in 119 Bus Radial Distribution Network using PSO Algorithm\",\"authors\":\"V. Rafi, Sharief Nadendla, V. Nayak, K.Venkata Naga Sai Reddy, G.UmeshSai Kumar, A. Maniteja\",\"doi\":\"10.1109/ICOEI56765.2023.10125873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research work.the formulation and reorganization of RDN is detailed using loop matrix. The analytical method of determining optimal reorganization consumes more computation time. The computation time increases with number of buses inthe system. So, an optimization algorithm is needed for finding the optimal reorganization of the radial distribution system. The major objective of the optimal reorganization is the minimizing the losses of the network. The optimization algorithms which are used in this article are Genetic Algorithm, Particle Swarm Optimization. In this article, the metaheuristic method is used for optimal reorganization. The organic optimization technique like PSOalgorithm is used for reorganization. The reorganisation issue is explored and examined in the presence and absence of the optimisation approach in a conventional large-scale 119 node network in different circumstances. The acquired findings are then compared.\",\"PeriodicalId\":168942,\"journal\":{\"name\":\"2023 7th International Conference on Trends in Electronics and Informatics (ICOEI)\",\"volume\":\"49 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 7th International Conference on Trends in Electronics and Informatics (ICOEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOEI56765.2023.10125873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th International Conference on Trends in Electronics and Informatics (ICOEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOEI56765.2023.10125873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究工作中。利用循环矩阵详细描述了RDN的形成和重组。确定最优重组的解析法计算时间较长。计算时间随着系统中总线数量的增加而增加。因此,需要一种优化算法来寻找径向配电系统的最优重组。最优重组的主要目标是使网络损失最小化。本文使用的优化算法有遗传算法、粒子群算法。本文采用元启发式方法进行最优重组。采用pso算法等有机优化技术进行重组。在不同情况下,在传统的大规模119节点网络中,在存在和不存在优化方法的情况下,对重组问题进行了探索和检查。然后对获得的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimization of Losses in 119 Bus Radial Distribution Network using PSO Algorithm
In this research work.the formulation and reorganization of RDN is detailed using loop matrix. The analytical method of determining optimal reorganization consumes more computation time. The computation time increases with number of buses inthe system. So, an optimization algorithm is needed for finding the optimal reorganization of the radial distribution system. The major objective of the optimal reorganization is the minimizing the losses of the network. The optimization algorithms which are used in this article are Genetic Algorithm, Particle Swarm Optimization. In this article, the metaheuristic method is used for optimal reorganization. The organic optimization technique like PSOalgorithm is used for reorganization. The reorganisation issue is explored and examined in the presence and absence of the optimisation approach in a conventional large-scale 119 node network in different circumstances. The acquired findings are then compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of Crop Recommender System using Machine Learning and IoT Implementation of Ripple Carry Adder Using Full Swing Gate Diffusion Input Minimization of Losses in 119 Bus Radial Distribution Network using PSO Algorithm A Novel Cell Density Prediction Design using Optimal Deep Learning with Salp Swarm Algorithm Blockchain-based Secure Health Records in the Healthcare Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1