基于Haar小波特征的内镜图像早期食管癌检测

Kohei Watarai, Teruya Minamoto
{"title":"基于Haar小波特征的内镜图像早期食管癌检测","authors":"Kohei Watarai, Teruya Minamoto","doi":"10.1109/ICWAPR48189.2019.8946486","DOIUrl":null,"url":null,"abstract":"We propose a new method for early esophageal cancer detection from endoscopic images. In the proposed method, an endoscopic image is converted to the CIE $\\mathrm {L}^{*}\\mathrm {a}^{*}\\mathrm {b}^{*}$ color space, and the Haar wavelet transform is applied to the $\\mathrm {L}^{*}$ and $\\mathrm {a}^{*}$ components. First, we create an average image of the normal region from the $\\mathrm {a}^{*}$ component. Next, we calculate the threshold for detecting abnormal regions from the average image, based on a box plot. In our experiment, the $\\mathrm {L}^{*}$ and $\\mathrm {a}^{*}$ components of the endoscopic image are divided into small blocks. The $\\mathrm {L}^{*}$ component is normalized and binarized, to determine the analysis target. The a*component is used to calculate a trim mean, and this is compared with a threshold and binarized. Then, the logical product of the $\\mathrm {L}^{*}$ and $\\mathrm {a}^{*}$ components is computed to generate an enhanced image and detect abnormal regions. We describe the method for detecting abnormal regions in detail, and show that our proposed method is useful for early esophageal cancer detection from endoscopic images.","PeriodicalId":436840,"journal":{"name":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","volume":"5 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Early Esophageal Cancer from Endoscopic Images Based on a Haar Wavelet Feature\",\"authors\":\"Kohei Watarai, Teruya Minamoto\",\"doi\":\"10.1109/ICWAPR48189.2019.8946486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new method for early esophageal cancer detection from endoscopic images. In the proposed method, an endoscopic image is converted to the CIE $\\\\mathrm {L}^{*}\\\\mathrm {a}^{*}\\\\mathrm {b}^{*}$ color space, and the Haar wavelet transform is applied to the $\\\\mathrm {L}^{*}$ and $\\\\mathrm {a}^{*}$ components. First, we create an average image of the normal region from the $\\\\mathrm {a}^{*}$ component. Next, we calculate the threshold for detecting abnormal regions from the average image, based on a box plot. In our experiment, the $\\\\mathrm {L}^{*}$ and $\\\\mathrm {a}^{*}$ components of the endoscopic image are divided into small blocks. The $\\\\mathrm {L}^{*}$ component is normalized and binarized, to determine the analysis target. The a*component is used to calculate a trim mean, and this is compared with a threshold and binarized. Then, the logical product of the $\\\\mathrm {L}^{*}$ and $\\\\mathrm {a}^{*}$ components is computed to generate an enhanced image and detect abnormal regions. We describe the method for detecting abnormal regions in detail, and show that our proposed method is useful for early esophageal cancer detection from endoscopic images.\",\"PeriodicalId\":436840,\"journal\":{\"name\":\"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"volume\":\"5 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR48189.2019.8946486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR48189.2019.8946486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的内镜图像早期食管癌检测方法。在该方法中,将内窥镜图像转换为CIE $\mathrm {L}^{*}\mathrm {a}^{*}\mathrm {b}^{*}$颜色空间,并对$\mathrm {L}^{*}$和$\mathrm {a}^{*}$分量进行Haar小波变换。首先,我们从$\mathrm {a}^{*}$分量中创建法线区域的平均图像。接下来,我们根据框图计算从平均图像中检测异常区域的阈值。在我们的实验中,内镜图像的$\mathrm {L}^{*}$和$\mathrm {a}^{*}$分量被分割成小块。$\mathrm {L}^{*}$组件被规范化和二值化,以确定分析目标。a*分量用于计算修剪平均值,并将其与阈值进行比较并进行二值化。然后,计算$\mathrm {L}^{*}$和$\mathrm {a}^{*}$分量的逻辑积,生成增强图像并检测异常区域。我们详细描述了检测异常区域的方法,并表明我们提出的方法对内镜图像的早期食管癌检测是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Early Esophageal Cancer from Endoscopic Images Based on a Haar Wavelet Feature
We propose a new method for early esophageal cancer detection from endoscopic images. In the proposed method, an endoscopic image is converted to the CIE $\mathrm {L}^{*}\mathrm {a}^{*}\mathrm {b}^{*}$ color space, and the Haar wavelet transform is applied to the $\mathrm {L}^{*}$ and $\mathrm {a}^{*}$ components. First, we create an average image of the normal region from the $\mathrm {a}^{*}$ component. Next, we calculate the threshold for detecting abnormal regions from the average image, based on a box plot. In our experiment, the $\mathrm {L}^{*}$ and $\mathrm {a}^{*}$ components of the endoscopic image are divided into small blocks. The $\mathrm {L}^{*}$ component is normalized and binarized, to determine the analysis target. The a*component is used to calculate a trim mean, and this is compared with a threshold and binarized. Then, the logical product of the $\mathrm {L}^{*}$ and $\mathrm {a}^{*}$ components is computed to generate an enhanced image and detect abnormal regions. We describe the method for detecting abnormal regions in detail, and show that our proposed method is useful for early esophageal cancer detection from endoscopic images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of Early Esophageal Cancer from Endoscopic Images Based on a Haar Wavelet Feature A Study on Development of Wavelet Deep Learning ICWAPR 2019 Greetings from the General Chairs A Novel Image Zero-Watermarking Scheme Based on Non-Uniform Triangular Partition Data Generation Method Based on Correlation Between Sensors in Photovoltaic Arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1