基于BP-LSTM的青海省区域降水数据融合模型研究

Hongyu Wang, Xiaodan Zhang, Chen Quan, Tong Zhao, Huali Du
{"title":"基于BP-LSTM的青海省区域降水数据融合模型研究","authors":"Hongyu Wang, Xiaodan Zhang, Chen Quan, Tong Zhao, Huali Du","doi":"10.1117/12.2682392","DOIUrl":null,"url":null,"abstract":"Since Qinghai is located in the high-altitude Qinghai-Tibet Plateau region, the geomorphological types are complex and diverse, and the distribution of ground precipitation observation stations is sparse, improving the accuracy of precipitation data is critical for studying regional ecological change over time. In the paper, we study and construct a multi-source precipitation data fusion model based on neural networks, which consists of back propagation neural network (BPNN) and long short-term memory network (LSTM). The global precipitation measurement (GPM), fifth generation ECMWF atmospheric reanalysis (ERA5), digital elevation model (DEM), and normalized difference vegetation index (NDVI) data are selected as feature data and ground observation station data as label data for model training. The results show that the fused data generated by the BP-LSTM model reduces the root mean square error to 2.48mm and the overall relative bias to 0.25% compared with the original GPM, which is better than ERA5 on data accuracy. The precipitation event capture capability is improved, which is very close to the ERA5 data with strong precipitation event capture capability, and the probability of detection, false alarm rate, and missing event rate are 0.95, 0.53, and 0.04 respectively. Finally, the regional precipitation data is generated by the fusion model with resolution of 0.01°, 1h. The model proposed in the paper incorporates topographic factors and seasonal characteristics to solve the temporal and spatial correlation of precipitation data in Qinghai Province improve the accuracy of precipitation data, and provide reliable data support for the study of regional hydro-ecological spatial and temporal variation patterns.","PeriodicalId":440430,"journal":{"name":"International Conference on Electronic Technology and Information Science","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of regional precipitation data fusion model based on BP-LSTM in Qinghai province\",\"authors\":\"Hongyu Wang, Xiaodan Zhang, Chen Quan, Tong Zhao, Huali Du\",\"doi\":\"10.1117/12.2682392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since Qinghai is located in the high-altitude Qinghai-Tibet Plateau region, the geomorphological types are complex and diverse, and the distribution of ground precipitation observation stations is sparse, improving the accuracy of precipitation data is critical for studying regional ecological change over time. In the paper, we study and construct a multi-source precipitation data fusion model based on neural networks, which consists of back propagation neural network (BPNN) and long short-term memory network (LSTM). The global precipitation measurement (GPM), fifth generation ECMWF atmospheric reanalysis (ERA5), digital elevation model (DEM), and normalized difference vegetation index (NDVI) data are selected as feature data and ground observation station data as label data for model training. The results show that the fused data generated by the BP-LSTM model reduces the root mean square error to 2.48mm and the overall relative bias to 0.25% compared with the original GPM, which is better than ERA5 on data accuracy. The precipitation event capture capability is improved, which is very close to the ERA5 data with strong precipitation event capture capability, and the probability of detection, false alarm rate, and missing event rate are 0.95, 0.53, and 0.04 respectively. Finally, the regional precipitation data is generated by the fusion model with resolution of 0.01°, 1h. The model proposed in the paper incorporates topographic factors and seasonal characteristics to solve the temporal and spatial correlation of precipitation data in Qinghai Province improve the accuracy of precipitation data, and provide reliable data support for the study of regional hydro-ecological spatial and temporal variation patterns.\",\"PeriodicalId\":440430,\"journal\":{\"name\":\"International Conference on Electronic Technology and Information Science\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electronic Technology and Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2682392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electronic Technology and Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2682392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

青海省地处青藏高原高海拔地区,地貌类型复杂多样,地面降水观测站分布稀疏,提高降水数据的精度对研究区域生态变化具有重要意义。本文研究并构建了一种基于神经网络的多源降水数据融合模型,该模型由反向传播神经网络(BPNN)和长短期记忆网络(LSTM)组成。选择全球降水测量(GPM)、第五代ECMWF大气再分析(ERA5)、数字高程模型(DEM)和归一化植被指数(NDVI)数据作为特征数据,地面观测站数据作为标记数据进行模型训练。结果表明,BP-LSTM模型生成的融合数据与原始GPM相比,均方根误差降低到2.48mm,总体相对偏差降低到0.25%,数据精度优于ERA5。降水事件捕获能力得到提高,非常接近具有较强降水事件捕获能力的ERA5数据,探测概率、虚警率和缺失事件率分别为0.95、0.53和0.04。最后,利用分辨率为0.01°,1h的融合模型生成区域降水数据。本文提出的模型结合地形因子和季节特征,解决了青海省降水数据的时空相关性,提高了降水数据的精度,为研究区域水文生态时空变化格局提供了可靠的数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study of regional precipitation data fusion model based on BP-LSTM in Qinghai province
Since Qinghai is located in the high-altitude Qinghai-Tibet Plateau region, the geomorphological types are complex and diverse, and the distribution of ground precipitation observation stations is sparse, improving the accuracy of precipitation data is critical for studying regional ecological change over time. In the paper, we study and construct a multi-source precipitation data fusion model based on neural networks, which consists of back propagation neural network (BPNN) and long short-term memory network (LSTM). The global precipitation measurement (GPM), fifth generation ECMWF atmospheric reanalysis (ERA5), digital elevation model (DEM), and normalized difference vegetation index (NDVI) data are selected as feature data and ground observation station data as label data for model training. The results show that the fused data generated by the BP-LSTM model reduces the root mean square error to 2.48mm and the overall relative bias to 0.25% compared with the original GPM, which is better than ERA5 on data accuracy. The precipitation event capture capability is improved, which is very close to the ERA5 data with strong precipitation event capture capability, and the probability of detection, false alarm rate, and missing event rate are 0.95, 0.53, and 0.04 respectively. Finally, the regional precipitation data is generated by the fusion model with resolution of 0.01°, 1h. The model proposed in the paper incorporates topographic factors and seasonal characteristics to solve the temporal and spatial correlation of precipitation data in Qinghai Province improve the accuracy of precipitation data, and provide reliable data support for the study of regional hydro-ecological spatial and temporal variation patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network traffic classification based on multi-head attention and deep metric learning A study of regional precipitation data fusion model based on BP-LSTM in Qinghai province Design and application of an intelligent monitoring and early warning system for bioremediation of coking contaminated sites Research on improved adaptive spectrum access mechanism for millimetre wave Unloading optimization of networked vehicles based on improved genetic and particle swarm optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1