基于ilp的网格实时多核最坏情况争用估计

Jordi Cardona, Carles Hernández, E. Mezzetti, J. Abella, F. Cazorla
{"title":"基于ilp的网格实时多核最坏情况争用估计","authors":"Jordi Cardona, Carles Hernández, E. Mezzetti, J. Abella, F. Cazorla","doi":"10.1109/RTSS.2018.00043","DOIUrl":null,"url":null,"abstract":"Manycores are capable of providing the computational demands required by functionally-advanced critical applications in domains such as automotive and avionics. In manycores a network-on-chip (NoC) provides access to shared caches and memories and hence concentrates most of the contention that tasks suffer, with effects on the worst-case contention delay (WCD) of packets and tasks' WCET. While several proposals minimize the impact of individual NoC parameters on WCD, e.g. mapping and routing, there are strong dependences among these NoC parameters. Hence, finding the optimal NoC configurations requires optimizing all parameters simultaneously, which represents a multidimensional optimization problem. In this paper we propose NoCo, a novel approach that combines ILP and stochastic optimization to find NoC configurations in terms of packet routing, application mapping, and arbitration weight allocation. Our results show that NoCo improves other techniques that optimize a subset of NoC parameters.","PeriodicalId":294784,"journal":{"name":"2018 IEEE Real-Time Systems Symposium (RTSS)","volume":"153 10-12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"NoCo: ILP-Based Worst-Case Contention Estimation for Mesh Real-Time Manycores\",\"authors\":\"Jordi Cardona, Carles Hernández, E. Mezzetti, J. Abella, F. Cazorla\",\"doi\":\"10.1109/RTSS.2018.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manycores are capable of providing the computational demands required by functionally-advanced critical applications in domains such as automotive and avionics. In manycores a network-on-chip (NoC) provides access to shared caches and memories and hence concentrates most of the contention that tasks suffer, with effects on the worst-case contention delay (WCD) of packets and tasks' WCET. While several proposals minimize the impact of individual NoC parameters on WCD, e.g. mapping and routing, there are strong dependences among these NoC parameters. Hence, finding the optimal NoC configurations requires optimizing all parameters simultaneously, which represents a multidimensional optimization problem. In this paper we propose NoCo, a novel approach that combines ILP and stochastic optimization to find NoC configurations in terms of packet routing, application mapping, and arbitration weight allocation. Our results show that NoCo improves other techniques that optimize a subset of NoC parameters.\",\"PeriodicalId\":294784,\"journal\":{\"name\":\"2018 IEEE Real-Time Systems Symposium (RTSS)\",\"volume\":\"153 10-12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Real-Time Systems Symposium (RTSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSS.2018.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2018.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

多核能够提供汽车和航空电子等领域功能先进的关键应用所需的计算需求。在多核中,片上网络(NoC)提供了对共享缓存和内存的访问,因此集中了任务所遭受的大部分争用,对数据包的最坏情况争用延迟(WCD)和任务的WCET有影响。虽然有几个建议尽量减少单个NoC参数对WCD的影响,例如映射和路由,但这些NoC参数之间存在很强的依赖性。因此,寻找最佳NoC配置需要同时优化所有参数,这是一个多维优化问题。在本文中,我们提出了NoCo,这是一种结合了ILP和随机优化的新方法,可以在分组路由,应用映射和仲裁权重分配方面找到NoC配置。我们的研究结果表明,NoCo改进了其他优化NoC参数子集的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NoCo: ILP-Based Worst-Case Contention Estimation for Mesh Real-Time Manycores
Manycores are capable of providing the computational demands required by functionally-advanced critical applications in domains such as automotive and avionics. In manycores a network-on-chip (NoC) provides access to shared caches and memories and hence concentrates most of the contention that tasks suffer, with effects on the worst-case contention delay (WCD) of packets and tasks' WCET. While several proposals minimize the impact of individual NoC parameters on WCD, e.g. mapping and routing, there are strong dependences among these NoC parameters. Hence, finding the optimal NoC configurations requires optimizing all parameters simultaneously, which represents a multidimensional optimization problem. In this paper we propose NoCo, a novel approach that combines ILP and stochastic optimization to find NoC configurations in terms of packet routing, application mapping, and arbitration weight allocation. Our results show that NoCo improves other techniques that optimize a subset of NoC parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NoCo: ILP-Based Worst-Case Contention Estimation for Mesh Real-Time Manycores Distributed Real-Time Shortest-Paths Computations with the Field Calculus Dynamic Channel Selection for Real-Time Safety Message Communication in Vehicular Networks An Efficient Knapsack-Based Approach for Calculating the Worst-Case Demand of AVR Tasks Schedulability Analysis of Adaptive Variable-Rate Tasks with Dynamic Switching Speeds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1