用于高压电源应用的四端JFET紧凑型模型

Weimin Wu, Suman K. Banerjee, K. Joardar
{"title":"用于高压电源应用的四端JFET紧凑型模型","authors":"Weimin Wu, Suman K. Banerjee, K. Joardar","doi":"10.1109/ICMTS.2015.7106105","DOIUrl":null,"url":null,"abstract":"This paper presents a physics-based compact model for four-terminal (4T) JFETs. It is capable of modeling device characteristics when the top and bottom gates are biased independently. The model is formulated using symmetric linearization technique from the CMC (compact model council) standard MOSFET model PSP, which gives simpler model equations than other reported 4T JFET models. It also includes carrier velocity saturation effect which is important for short channel and/or high voltage devices. The model has been verified on several JFETs (including device with blocking voltage rated > 700V). Good agreement has been achieved between silicon data and simulation. The complete model has been implemented into process design kits (PDKs) for high-voltage power management switcher design.","PeriodicalId":177627,"journal":{"name":"Proceedings of the 2015 International Conference on Microelectronic Test Structures","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A four-terminal JFET compact model for high-voltage power applications\",\"authors\":\"Weimin Wu, Suman K. Banerjee, K. Joardar\",\"doi\":\"10.1109/ICMTS.2015.7106105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a physics-based compact model for four-terminal (4T) JFETs. It is capable of modeling device characteristics when the top and bottom gates are biased independently. The model is formulated using symmetric linearization technique from the CMC (compact model council) standard MOSFET model PSP, which gives simpler model equations than other reported 4T JFET models. It also includes carrier velocity saturation effect which is important for short channel and/or high voltage devices. The model has been verified on several JFETs (including device with blocking voltage rated > 700V). Good agreement has been achieved between silicon data and simulation. The complete model has been implemented into process design kits (PDKs) for high-voltage power management switcher design.\",\"PeriodicalId\":177627,\"journal\":{\"name\":\"Proceedings of the 2015 International Conference on Microelectronic Test Structures\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Conference on Microelectronic Test Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMTS.2015.7106105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Conference on Microelectronic Test Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMTS.2015.7106105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一个基于物理的四端(4T) jfet紧凑模型。它能够在上下门独立偏置时对器件特性进行建模。该模型采用CMC (compact model council)标准MOSFET模型PSP的对称线性化技术,模型方程比其他已有的4T JFET模型更简单。它还包括载波速度饱和效应,这对短通道和/或高压器件很重要。该模型已在多个jfet(包括额定阻断电压> 700V的器件)上进行了验证。实测数据与仿真结果吻合较好。完整的模型已应用于高压电源管理开关设计的过程设计套件(pdk)中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A four-terminal JFET compact model for high-voltage power applications
This paper presents a physics-based compact model for four-terminal (4T) JFETs. It is capable of modeling device characteristics when the top and bottom gates are biased independently. The model is formulated using symmetric linearization technique from the CMC (compact model council) standard MOSFET model PSP, which gives simpler model equations than other reported 4T JFET models. It also includes carrier velocity saturation effect which is important for short channel and/or high voltage devices. The model has been verified on several JFETs (including device with blocking voltage rated > 700V). Good agreement has been achieved between silicon data and simulation. The complete model has been implemented into process design kits (PDKs) for high-voltage power management switcher design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A four-terminal JFET compact model for high-voltage power applications In-line monitoring test structure for Charge-Based Capacitance Measurement (CBCM) with a start-stop self-pulsing circuit Area and performance study of FinFET with detailed parasitic capacitance analysis in 16nm process node Development of a compacted doubly nesting array in Narrow Scribe Line aimed at detecting soft failures of interconnect via Observations on substrate characterisation through Coplanar Transmission Line Impedance measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1