{"title":"一类等式约束的最优值函数的一阶可微性及其应用","authors":"K. Sturm","doi":"10.46298/jnsao-2020-6034","DOIUrl":null,"url":null,"abstract":"In this paper we study the right differentiability of a parametric infimum function over a parametric set defined by equality constraints. We present a new theorem with sufficient conditions for the right differentiability with respect to the parameter. Target applications are nonconvex objective functions with equality constraints arising in optimal control and shape optimisation. The theorem makes use of the averaged adjoint approach in conjunction with the variational approach of Kunisch, Ito and Peichl. We provide two examples of our abstract result: (a) a shape optimisation problem involving a semilinear partial differential equation which exhibits infinitely many solutions, (b) a finite dimensional quadratic function subject to a nonlinear equation.","PeriodicalId":250939,"journal":{"name":"Journal of Nonsmooth Analysis and Optimization","volume":"152 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"First-order differentiability properties of a class of equality constrained optimal value functions with applications\",\"authors\":\"K. Sturm\",\"doi\":\"10.46298/jnsao-2020-6034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the right differentiability of a parametric infimum function over a parametric set defined by equality constraints. We present a new theorem with sufficient conditions for the right differentiability with respect to the parameter. Target applications are nonconvex objective functions with equality constraints arising in optimal control and shape optimisation. The theorem makes use of the averaged adjoint approach in conjunction with the variational approach of Kunisch, Ito and Peichl. We provide two examples of our abstract result: (a) a shape optimisation problem involving a semilinear partial differential equation which exhibits infinitely many solutions, (b) a finite dimensional quadratic function subject to a nonlinear equation.\",\"PeriodicalId\":250939,\"journal\":{\"name\":\"Journal of Nonsmooth Analysis and Optimization\",\"volume\":\"152 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonsmooth Analysis and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jnsao-2020-6034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonsmooth Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jnsao-2020-6034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
First-order differentiability properties of a class of equality constrained optimal value functions with applications
In this paper we study the right differentiability of a parametric infimum function over a parametric set defined by equality constraints. We present a new theorem with sufficient conditions for the right differentiability with respect to the parameter. Target applications are nonconvex objective functions with equality constraints arising in optimal control and shape optimisation. The theorem makes use of the averaged adjoint approach in conjunction with the variational approach of Kunisch, Ito and Peichl. We provide two examples of our abstract result: (a) a shape optimisation problem involving a semilinear partial differential equation which exhibits infinitely many solutions, (b) a finite dimensional quadratic function subject to a nonlinear equation.