混合超参数调谐对基于深度学习的声学场景分类系统的影响

Zhor Diffallah, H. Ykhlef, Hafida Bouarfa, F. Ykhlef
{"title":"混合超参数调谐对基于深度学习的声学场景分类系统的影响","authors":"Zhor Diffallah, H. Ykhlef, Hafida Bouarfa, F. Ykhlef","doi":"10.1109/ICRAMI52622.2021.9585948","DOIUrl":null,"url":null,"abstract":"Acoustic scene classification (ASC) refers to the identification of the environment in which audio excerpts have been recorded. It associates a semantic label to each audio recording. This task has recently drawn a lot of attention as a result of electronics such as smartphones, autonomous robots, or security systems acquiring the ability to perceive sounds. State-of-the-art sound scene classification heavily relies on deep neural network models. However, the complexity of these models makes them more prone to overfitting. The most widely used approach to overcome this concern is data augmentation. In this paper, we design and analyze the behavior of multiple deep learning-based acoustic scene classification systems. These systems are built following two deep convolutional neural network architectures which are defined with different characteristics. Moreover, this work deeply explores the use of Mixup data augmentation method and the effects of varying its hyperparameters. The obtained results indicate that proper tuning of Mixup hyperparameter significantly improves the classification performance, while considering the network architecture being employed.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Impact of Mixup Hyperparameter Tunning on Deep Learning-based Systems for Acoustic Scene Classification\",\"authors\":\"Zhor Diffallah, H. Ykhlef, Hafida Bouarfa, F. Ykhlef\",\"doi\":\"10.1109/ICRAMI52622.2021.9585948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustic scene classification (ASC) refers to the identification of the environment in which audio excerpts have been recorded. It associates a semantic label to each audio recording. This task has recently drawn a lot of attention as a result of electronics such as smartphones, autonomous robots, or security systems acquiring the ability to perceive sounds. State-of-the-art sound scene classification heavily relies on deep neural network models. However, the complexity of these models makes them more prone to overfitting. The most widely used approach to overcome this concern is data augmentation. In this paper, we design and analyze the behavior of multiple deep learning-based acoustic scene classification systems. These systems are built following two deep convolutional neural network architectures which are defined with different characteristics. Moreover, this work deeply explores the use of Mixup data augmentation method and the effects of varying its hyperparameters. The obtained results indicate that proper tuning of Mixup hyperparameter significantly improves the classification performance, while considering the network architecture being employed.\",\"PeriodicalId\":440750,\"journal\":{\"name\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAMI52622.2021.9585948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

声学场景分类(Acoustic scene classification, ASC)是指对录制音频片段的环境进行识别。它将一个语义标签关联到每个音频记录。由于智能手机、自动机器人、安保系统等电子产品获得了感知声音的能力,这项任务最近受到了广泛关注。最先进的声音场景分类严重依赖于深度神经网络模型。然而,这些模型的复杂性使它们更容易过度拟合。克服这种担忧的最广泛使用的方法是数据增强。在本文中,我们设计并分析了多个基于深度学习的声学场景分类系统的行为。这些系统是根据两种具有不同特征的深度卷积神经网络架构构建的。此外,本工作还深入探讨了Mixup数据增强方法的使用及其超参数变化的影响。结果表明,在考虑网络结构的情况下,适当调整Mixup超参数可以显著提高分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Mixup Hyperparameter Tunning on Deep Learning-based Systems for Acoustic Scene Classification
Acoustic scene classification (ASC) refers to the identification of the environment in which audio excerpts have been recorded. It associates a semantic label to each audio recording. This task has recently drawn a lot of attention as a result of electronics such as smartphones, autonomous robots, or security systems acquiring the ability to perceive sounds. State-of-the-art sound scene classification heavily relies on deep neural network models. However, the complexity of these models makes them more prone to overfitting. The most widely used approach to overcome this concern is data augmentation. In this paper, we design and analyze the behavior of multiple deep learning-based acoustic scene classification systems. These systems are built following two deep convolutional neural network architectures which are defined with different characteristics. Moreover, this work deeply explores the use of Mixup data augmentation method and the effects of varying its hyperparameters. The obtained results indicate that proper tuning of Mixup hyperparameter significantly improves the classification performance, while considering the network architecture being employed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation Of The Structure FSS Using The WCIP Method For Dual Polarization Applications Impact of Mixup Hyperparameter Tunning on Deep Learning-based Systems for Acoustic Scene Classification Analysis of Solutions for a Reaction-Diffusion Epidemic Model Segmentation of Positron Emission Tomography Images Using Multi-atlas Anatomical Magnetic Resonance Imaging (MRI) Multi-Input CNN for molecular classification in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1