基于极限学习机(ELM)模型的工况点作为能量评估与温度和速度之间的沟通桥梁

Deqing Zhai, Y. Soh, W. Cai
{"title":"基于极限学习机(ELM)模型的工况点作为能量评估与温度和速度之间的沟通桥梁","authors":"Deqing Zhai, Y. Soh, W. Cai","doi":"10.1109/ICIEA.2016.7603675","DOIUrl":null,"url":null,"abstract":"This paper aims to evaluate the high energy demand components in the buildings, such as HVAC system, with respect to the indoor environmental parameters, such as ambient air temperature and velocity. The Extreme Learning Machine (ELM) was chosen to be trained from the experimental data in the thermal laboratory due to its accuracy and less computational complexity from many previous researches and studies. Therefore the given physical environmental parameters are able to be predicting the energy consumptions level from the ELM model of Air Handling Unit (AHU) of HVAC systems.","PeriodicalId":283114,"journal":{"name":"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Operating points as communication bridge between energy evaluation with air temperature and velocity based on extreme learning machine (ELM) models\",\"authors\":\"Deqing Zhai, Y. Soh, W. Cai\",\"doi\":\"10.1109/ICIEA.2016.7603675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to evaluate the high energy demand components in the buildings, such as HVAC system, with respect to the indoor environmental parameters, such as ambient air temperature and velocity. The Extreme Learning Machine (ELM) was chosen to be trained from the experimental data in the thermal laboratory due to its accuracy and less computational complexity from many previous researches and studies. Therefore the given physical environmental parameters are able to be predicting the energy consumptions level from the ELM model of Air Handling Unit (AHU) of HVAC systems.\",\"PeriodicalId\":283114,\"journal\":{\"name\":\"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"277 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2016.7603675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2016.7603675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文旨在从室内环境参数(如环境空气温度和速度)方面对建筑中高能耗部件(如暖通空调系统)进行评估。极限学习机(Extreme Learning Machine, ELM)在热工实验室的实验数据中进行训练,是因为前人的研究结果表明,极限学习机的训练精度高,计算复杂度低。因此,在给定物理环境参数的情况下,利用ELM模型可以预测暖通空调系统中空气处理机组的能耗水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Operating points as communication bridge between energy evaluation with air temperature and velocity based on extreme learning machine (ELM) models
This paper aims to evaluate the high energy demand components in the buildings, such as HVAC system, with respect to the indoor environmental parameters, such as ambient air temperature and velocity. The Extreme Learning Machine (ELM) was chosen to be trained from the experimental data in the thermal laboratory due to its accuracy and less computational complexity from many previous researches and studies. Therefore the given physical environmental parameters are able to be predicting the energy consumptions level from the ELM model of Air Handling Unit (AHU) of HVAC systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The electric power source structure optimization based on capital investment efficiency Modeling, control and implementation of high step-up ratio IDDB converters for fuel cell applications Research of heat transfer characteristic for PMSM with two-way ventilation structure Experimental researches on the novel single-phase induction motor Adaptive similarity fusion strategy in stereo matching algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1