领域自适应情感分析中结构对应学习的轴心特征选择新方法

Yanbo Zhang, Y. Qu, Junsan Zhang
{"title":"领域自适应情感分析中结构对应学习的轴心特征选择新方法","authors":"Yanbo Zhang, Y. Qu, Junsan Zhang","doi":"10.1109/DBTA.2010.5658932","DOIUrl":null,"url":null,"abstract":"In recent years,Structural Correspondence Learning (SCL) is becoming one of the most important techniques for domain adaptation in natural language processing.T-SCL method for sentiment classification selects high frequency features which don't have enough ability to discriminate positive instances from negative instances.Therefore, FisherA&IG-SCL method,a new method for selecting pivot features, is proposed. This method makes pivot features selected by Criterion function and Information Gain more discriminative and descriptive. The experimental results show that proposed FisherA&IG-SCL method can produce much better performance.","PeriodicalId":320509,"journal":{"name":"2010 2nd International Workshop on Database Technology and Applications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Method of Selecting Pivot Features for Structural Correspondence Learning in Domain Adaptive Sentiment Analysis\",\"authors\":\"Yanbo Zhang, Y. Qu, Junsan Zhang\",\"doi\":\"10.1109/DBTA.2010.5658932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years,Structural Correspondence Learning (SCL) is becoming one of the most important techniques for domain adaptation in natural language processing.T-SCL method for sentiment classification selects high frequency features which don't have enough ability to discriminate positive instances from negative instances.Therefore, FisherA&IG-SCL method,a new method for selecting pivot features, is proposed. This method makes pivot features selected by Criterion function and Information Gain more discriminative and descriptive. The experimental results show that proposed FisherA&IG-SCL method can produce much better performance.\",\"PeriodicalId\":320509,\"journal\":{\"name\":\"2010 2nd International Workshop on Database Technology and Applications\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Database Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DBTA.2010.5658932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Database Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBTA.2010.5658932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,结构对应学习(SCL)已成为自然语言处理领域适应的重要技术之一。情感分类的T-SCL方法选择高频特征,这些特征没有足够的能力区分正面和负面实例。为此,提出了一种新的选择枢轴特征的方法——fisher & ig - scl方法。该方法使准则函数和信息增益所选择的枢轴特征具有更强的判别性和描述性。实验结果表明,所提出的fisher & ig - scl方法可以获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Method of Selecting Pivot Features for Structural Correspondence Learning in Domain Adaptive Sentiment Analysis
In recent years,Structural Correspondence Learning (SCL) is becoming one of the most important techniques for domain adaptation in natural language processing.T-SCL method for sentiment classification selects high frequency features which don't have enough ability to discriminate positive instances from negative instances.Therefore, FisherA&IG-SCL method,a new method for selecting pivot features, is proposed. This method makes pivot features selected by Criterion function and Information Gain more discriminative and descriptive. The experimental results show that proposed FisherA&IG-SCL method can produce much better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SRJA: Iceberg Join Processing in Wireless Sensor Networks A New Method of Selecting Pivot Features for Structural Correspondence Learning in Domain Adaptive Sentiment Analysis Apply of Data Ming Technology in CRM A New Like Fibonacci Sequence and Its Properties Multisensor Estimation Fusion for Wireless Networks with Mixed Data Delays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1